

Stan Reeves

Introduction

LATEX

Editors

Automation

Prosper

Beamer

Posters

Introducing Document Preparation with LATEX

Stan Reeves

Department of Electrical and Computer Engineering

July 23, 2010

Stan Reeves

Introducti

LAT_EX

Editors

Automation

Prosper

Beamer

Posters

Preparation of a document involves

- Entering text
- Formatting text
- Display on a screen
- Printing

Stan Reeves

Introduction

LAT_EX

Editors

Automation

Prosper

Beamer Posters

- Preparation of a document involves
 - Entering text
 - Formatting text
 - Display on a screen
 - Printing
- T_EX $(\tau \epsilon \chi)$ is a typesetting system.
 - METAFONT Font description language
 - A point on a glyph is found as the intersection of a line segment and a Bézier cubic curve
 - Computer modern typeface.
 - 62 parameters control the widths and heights of elements

Author of T_EX

Donald Knuth (1978), computer science professor at Stanford

Introducing Document Preparation with LATEX

Stan Reeves

Introduction

LAT_EX

Editors

Automation

Prosper

Beamer Posters Math spacing carefully derived based on typesets in:

- Acta Mathematica
- Indagationes Mathematicae
- Addison-Wesley's books

Introducing Document Preparation with LATEX

Stan Reeves

Introduction

IIIIIOddCiloi

LAT_EX

Editors

Automation

Prosper

Beamer

- Math spacing carefully derived based on typesets in:
 - Acta Mathematica
 - Indagationes Mathematicae
 - Addison-Wesley's books
- Line breaks
 - A total-fit line-breaking algorithm
 - Assigns badness. Minimizes SS of badness

Introducing Document Preparation with LATEX

Stan Reeves

Introduction

Introduction

LATEX Editors

Automation

Prosper

Reamer

- Math spacing carefully derived based on typesets in:
 - Acta Mathematica
 - Indagationes Mathematicae
 - Addison-Wesley's books
- Line breaks
 - A total-fit line-breaking algorithm
 - Assigns badness. Minimizes SS of badness
- Hyphenation algorithm
 - Removes prefixes and suffixes
 - Will attempt to put a break between consonants in a pattern of the form vowel-consonant-consonant-vowel.

Introducing Document Preparation with LATEX

Stan Reeves

Introduction

introduction

LATEX Editors

Automation

Prosper

Beamer

Posters

- Math spacing carefully derived based on typesets in:
 - Acta Mathematica
 - Indagationes Mathematicae
 - Addison-Wesley's books
- Line breaks
 - A total-fit line-breaking algorithm
 - Assigns badness. Minimizes SS of badness
- Hyphenation algorithm
 - Removes prefixes and suffixes
 - Will attempt to put a break between consonants in a pattern of the form vowel-consonant-consonant-vowel.

LATEX is a set of macros for TEX

Written by Leslie Lamport (1984), current release \LaTeX 2 $_{\varepsilon}$

Pronunciation and Typesetting of LATEX

Document Preparation with LATEX

Stan Reeves

Introduction

LATEX

Editors

Automation

Prosper

Beamer

Posters

- no single agreed-upon pronunciation
- TEX derives from the Greek $\tau \epsilon \chi \nu \eta$, which means "art, skill, craft"
- origin of the name suggests that "X" be pronounced like the "ch" in "technical"
- Options:
 - LAYtek
 - LAHtek
 - LahTEK

In $\angle T_E X$, the symbol is a built-in $\angle T_E X$ command $\angle T_E X$. In plain text, it should be spelled L-a-T-e-X.

Why LATEX?

Introducing Document Preparation with LATEX

Stan Reeves

Introduction

Editors

LAT_EX

Automation

Prosper

riospei

Beamer Posters It is a natural choice if you want to create beautiful output

- A structured system of typesetting. Spend time and effort on content not on layout
- Works across platforms
- Handles math well
- Table of contents, list of figures, bibliography etc.
- Cross-referencing features
- Stable processing engine
- Highly extensible
- Input is plain text
- Output can be anything
- Complete document preparation. Articles, presentations, posters, HTML.

Why LATEX?

Introducing Document Preparation with LATEX

Stan Reeves

Introduction

LATEX Editors

Automation

Prosper

Beamer

- It is a natural choice if you want to create beautiful output
- A structured system of typesetting. Spend time and effort on content not on layout
- Works across platforms
- Handles math well
- Table of contents, list of figures, bibliography etc.
- Cross-referencing features
- Stable processing engine
- Highly extensible
- Input is plain text
- Output can be anything
- Complete document preparation. Articles, presentations, posters, HTML.
- FREE & open source

LATEX vs. MS Word

Introducing Document Preparation with LATEX

Stan Reeves

Introduction

introduction

LAT_EX

Editors Automation

Prosper

Beamer

	MEX	MS Word
WYSIWYG	×	√
Platform independent	\checkmark	×
Math	\checkmark	\checkmark
Citations & references	\checkmark	×
Automated TOC, LoF	\checkmark	×
Cross-references	\checkmark	×
Style changes	\checkmark	\checkmark
Multimedia	\checkmark	\checkmark
Free	\checkmark	×

Stan Reeves

Introduction

LAT_EX

Editors

Automation

Prosper

riuspe

Beamer

$$I_{mn}(\lambda) = I_0(\lambda)T_m^2(\lambda)\sum_{p=-\infty}^{\infty} \int_{r_m}^{r_m+w_m} dx \int_{r_m+p}^{r_m+w_m+p} PSF(x-x')dx'$$

$$I_{mn}(\lambda) = I_o(\lambda) T_m^2(\lambda) \sum_{n=-\infty}^{\infty} \int_{r_m}^{r_m + w_m} dx \int_{r_m + pT}^{r_m + w_m + pT} PSF(x - x') dx'$$

Why LATEX?

Introducing Document Preparation with LATEX

Stan Reeves

Introduction

LAT_EX

Editors

Automation

Prosper

Beamer

Posters

MEX

$$I_{mn}(\lambda) = I_0(\lambda)T_m^2(\lambda)\sum_{p=-\infty}^{\infty} \int_{r_m}^{r_m+w_m} dx \int_{rn+pT}^{r_n+w_m+pT} PSF(x-x')dx'$$

MS Word Equation Editor

$$I_{mn}(\lambda) = I_o(\lambda) T_m^2(\lambda) \sum_{n=-\infty}^{\infty} \int_{r_m}^{r_m + w_m} dx \int_{r_m + pT}^{r_m + w_m + pT} PSF(x - x') dx'$$

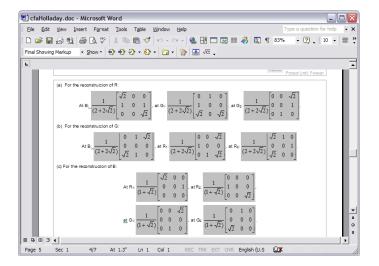
Why LATEX?

Introducing Document Preparation with LATEX

Stan Reeves

Introduction

LAT_EX


Editors

Automation

Prosper

riuspe

Beamer

Installation

Introducing Document Preparation with LATEX

Stan Reeves

Introduction

LAT_EX

Editors

Automation

Prosper

Beamer

Posters

Pa	ackages			
		Back-end	Front-end	
	Windows	MikT _E X , T _E XLive	WinEdt, TEXnicCenter	
	Mac	CMacT _E X, OzT _E X	T _E XShop iT _E XMac	
	Linux	teT _E X, T _E X Live	Kile	

CoE Windows labs have:

- MikT_EX
- TEXnicCenter

LATEX for the PC

Introducing Document Preparation with LATEX

Stan Reeves

Introduction

madadad

LAT_EX Editors

Automation

Prosper

i iospei

Beamer Posters To install LATEX on your PC you need:

- The back-end: The base T_EX package
 - Windows
 - (MikT_EX). Available at the MikT_EX homepage
 - TEXLive
 - Ghostscript, Ghostview, and GSview.
- The front-end: A LATEX editor (WinEdt, TEXnicCenter)
 - WinEdt: evaluation version. TEXnicCenter: free
 - Available at <u>the WinEdt</u> homepage or at Sourceforge.net

The downside

Document Preparation with LATEX

Stan Reeves

Introduction

LAT⊨X

Editors

Automation

Prosper

Beamer

Posters

There are certain "disadvantages"

- Somewhat steep learning curve
- Not interactive. Have to use pre-viewer before finalizing document
- Difficult to create your own document type

LATEX workflow

Introducing Document Preparation with LATEX

Stan Reeves

Introduction

ii iti oddotio

LATEX Editors

Automation

Prosper

Beamer Posters \documentclass{article} dvips ps file \usepackage {amsmath} \usepackage {epsfig} \begin {document} section (Introduction) DVI LATEX ps2pdf file \end{document} dvipdf pdf file

pdflatex is an alternative workflow that goes straight from the *.tex file to a PDF file.

Getting started

\documentclass{article}

\begin{align}

\end{align}
\end{document}

 $p(x|y) &= \frac{p(y|x)p(x)}{p(y)}$

Introducing Document Preparation with LATEX

Stan Reeves

Introduction

LATEX

Editors

Automation

Prosper

Beamer

```
\begin{document}
\section{Introduction}

The conditional probability of an event $A$ assuming another event $M$, denoted by $P(A\,|M)$, is by definition the ratio
\begin{align}
P(A\,|M) &= \frac{P(AM)}{P(M)}
\end{align}
\subsection{Bayes's theorem}

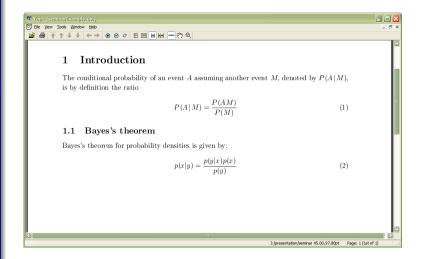
Bayes's theorem for probability densities is given by:
```

Getting started

Introducing Document Preparation with LATEX

Stan Reeves

Introduction


LATEX

Editors

Automation

Prosper

Beamer

LaTeX Documents

Document Preparation with LATEX

Stan Reeves

Introduction

LAT_EX

Editors

Automation

Prosper

Beamer

- \ is used to start LATEX commands
- % is used to start a comment
- &, \$, #, _, ^, { } and ~ are special characters
- Words are separated by one or more spaces.
- Paragraphs are separated by one or more blank lines.

Sectioning commands

Introducing Document Preparation with LATEX

Stan Reeves

Introduction

LATEX

Editors

Automation

Prosper

Beamer

Posters

The sectional units in an article are produced by the following commands:

- \chapter{title}
- \section{title}
- \subsection{title}
- \subsubsection{title}
- \paragraph{title}

List Environments

Introducing Document Preparation with LATEX

Stan Reeves

Introduction

LAT_EX

Editors

Automation

Prosper

Beamer

Posters

\begin{itemize}
\item enumerate: Numbered lists
\item itemize: Bulletted lists
\end{itemize}

- enumerate: Numbered lists
- itemize: Bulleted lists

\begin{enumerate}
\item enumerate: Numbered lists
\item itemize: Bulletted lists
\end{enumerate}

- enumerate: Numbered lists
- itemize: Bulletted lists

Math

Introducina Document Preparation with LATEX

Stan Reeves

Introduction

LAT_EX

Editors Automation

Prosper

Posters

Beamer

Inline math

Inline math appears within a line and must appear enclosed in \$ signs. $$x^2 = 2$ $\Rightarrow x = \pm \sqrt{2}$ \$.

Inline math appears within a line and must appear enclosed in \$ signs. $x^2 = 2 \Rightarrow x = \pm \sqrt{2}$.

Equations

\begin{align} $\operatorname{Cal}\{F\}(\operatorname{omega}) = \operatorname{Int}_{-\inf Y}^{\inf Y}$ $f(t)e^{-i \pmod{a}} dt$ \end{align}

$$\mathscr{F}(\omega) = \int_{-\infty}^{\infty} f(t) \, e^{-j\omega t} dt \tag{1}$$

More math

\end{align}

Introducing Document Preparation with LATEX

Stan Reeves

Introduction

LAT_EX

Editors

Automation

Prosper

riuspe

Beamer Posters The Fibonacci numbers form a sequence defined recursively by: \begin{align}

```
\label{eq:final_cases} F(n) &= \left\{ \begin{array}{c} 0, & \mathbb{1}, &
```

The Fibonacci numbers form a sequence defined recursively by:

$$F(n) = \begin{cases} 0, & \text{if } n = 0; \\ 1, & \text{if } n = 1; \\ F(n-1) + F(n-2) & \text{otherwise.} \end{cases} \tag{3}$$

Customizing

Introducing Document Preparation with LATEX

Stan Reeves

Introduction

LATEX

Editors

Automation

Prosper

Beamer

Posters

```
\documentclass{article}
\newcommand{\parD}[2]{\frac{\partial #1}{\partial #2}}
\newcommand{\parDD}[2]{\frac{\partial^2 #1}{\partial^2 #2}}
\begin{document}
```

\begin{align*}
 \parD{}{x} \left(\parD{y}{x} \right) = \parDD{y}{x}
\end{align*}

$$\frac{\partial}{\partial x} \left(\frac{\partial y}{\partial x} \right) = \frac{\partial^2 y}{\partial x^2}$$

Figures

Introducing Document Preparation with LATEX

Stan Reeves

Introduction

LAT_EX

Editors

Automation

Prosper

Beamer

Posters

\documentclass{article}
\usepackage{graphicx}

\begin{figure}[!h]
\centering
\includegraphics[width=5cm]{ginn_logo.pdf}
\caption{CoE logo}
\end{figure}

GINN COLLEGE OF ENGINEERING

Video

Document Preparation with LATEX

Stan Reeves

Introduction

LATEX

Editors

Automation

Prosper

Beamer

Posters

Flow behind a cylinder - vorticity contours

T_EXnicCenter

Introducing Document Preparation with LATEX

Stan Reeves

Introduction

LATEX

Editor

Automation

Prosper

Beamer

```
TeXnicCenter - [intro.tex]
file Edit Search View Insert Math Format Project Build Tools Window Help
                                                                              _ 8 x
 🆺 🚅 🖫 💋 🐰 🛅 📵 🕰 🔼 🖫 🔊 🕬 📅 LaTeX => DVI 🕟 💌 🕸 🐔 🔼 🖼 🕸 📲
 H! F K S T KA | ≣ ≣ ≣
                                       目表 Tab 6g 大 生 しゅんしゅん 4g 4g 4g 5g 5g 5g 5g 5g 5g 5g
  \documentclass{beamer}
  \usetheme{AUTheme}
  \usefonttheme(onlvmath){serif}
  \usepackage{amsmath, latexsvm, color, graphicx, amssvmb, here}
  \usepackage{epsf, epsfig, pifont.tikz}
  \usepackage{graphics, calrsfs}
  \usepackage{tangocolors,times}
  \usepackage{fancybox,calc}
  \newcommand{\parD}[2]{\frac{\partial #1}{\partial #2}}
  \newcommand{\parDD}[2]{\frac{\partial^2 #1}{\partial #2 ^2}}
  \newcommand{\laplacian}{\Delta}
  \renewcommand{\div}{\nabla\cdot}
  \newcommand{\grad}{\nabla}
  \newcommand{\divp}{\nabla^\prime\cdot}
  \newcommand{\gradp}{\nabla^\prime}
  \newcommand{\curl}{\nabla\times}
intro.tex
Press F1 to get help
                                                Ln 1, Col 1
                                                                 UNIX
                                                                        OVR READ UF I
```


Cross-referencing

Introducing Document Preparation with LATEX

Stan Reeves

Introduction

LAT_EX

Editors

Automation

Prosper

Beamer

Posters

Can cross-reference figures, tables, equations, sections using:

```
\label{name}, $\label{eq:wav}, \label{sec:wav}, \label{fig:wav} \\ ref{name}
```

For example

```
\label{eq:partial} $$  \parD{}{x} \left( \parD{y}{x} \right) = \parDD{y}{x} \end{align} $$  Eq. \left(eq:partial\right) describes \ldots
```

$$\frac{\partial}{\partial x} \left(\frac{\partial y}{\partial x} \right) = \frac{\partial^2 y}{\partial x^2} \tag{4}$$

References and citations

Introducing Document Preparation with LATEX

Stan Reeves

Introduction LAT⊨X

Editors

Automation

Prosper

Beamer

Posters

The BibTEX package

- Create a bibliography database with a .bib extension: e.g., bibdatabase.bib
- Include following two lines where you want the bibliography to appear

```
\bibliographystyle{style} %% (plain, alpha, abbrv, unsrt) \bibliography{bibdatabase}
```

BibT_EX entry

Introducing Document Preparation with LATEX

Stan Reeves

Introduction

LAT⊨X

Editors

Automation

Prosper

Beamer

Posters

A BibT_EX entry looks like:

```
@article{lane87,
  title = "Automatic multidimensional deconvolution",
  author = "R. G. Lane and R. H. T. Bates",
    JOURNAL = "Journal of the Optical Society of America",
    YEAR = "1987",
    VOLUME = "4",
    NUMBER = "1",
    PAGES = "180-188",
    MONTH = "January"
```


BibT_EX entry types

Introducing Document Preparation with LATEX

Stan Reeves

Introduction

LAT_EX

Editors

Prosper

Posters

Beamer

@booklet @conference @incollection

@manual @misc

@techreport

@proceedings

@inbook

@inproceedings

@mastersthesis @phdthesis

@unpublished

Citations

Introducing Document Preparation with LATEX

Stan Reeves

Introduction

LAT_EX

Editors

Automation

Automati

Prosper

Beamer

Posters

Use the

\cite{key}

command to include citations.

The authors in \cite{key} propose a new method to melt ice.

The authors in [1] propose a new method to melt ice.

Citations

Introducing Document Preparation with LATEX

Stan Reeves

Introduction

LAT_EX

Editors

Automation

Prosper

Reamer

Posters

Use the

\cite{key}

command to include citations.

The authors in \cite{key} propose a new method to melt ice.

The authors in [1] propose a new method to melt ice.

• To include an entry that was not cited in the LATEX document, add:

\nocite{key}

Citations

Introducing Document Preparation with LATEX

Stan Reeves

Introduction

LATEX

Editors

Automation

Prosper

Beamer

Posters

Use the

\cite{key}

command to include citations.

The authors in \cite{key} propose a new method to melt ice.

The authors in [1] propose a new method to melt ice.

 To include an entry that was not cited in the LATEX document, add:

\nocite{key}

May also use

\nocite(*)

JabRef

UNIVERSITY

Introducing Document Preparation with LATEX

Stan Reeves

Introduction

LAT_EX

Editors

Automa

Prosper

Beamer

		TeX Tools Web search Plugir			17				
alliab.		_		1 [Lyx					
#		Author	Title	Year	Journal	Owner	Timesta	Bibtexkey	-
1	Confer		HST Image Restoration-Status and Pro		Journal	Owner	Timestani	adorf91	
	Confer		3rd ESO/ST-ECF Data Analysis Workshop					adorf91b	
2	Article	Adhdasi and Ward	Reduction of Boundary Artifacts in Imag		IP			adhdasi96	,
1	Article	Agridasi and ward Akaike	A New Look at the Statistical Model Ident		IEEE Tra			akaike74	4
5	Article	Akaike Alecu et al	The Gaussian Transform of Distribution		Signal Pr		2006.12		
3				2000	Signal Pl	reevesj	2000.12		4
		. Algazi et al.	Directional Interpolation of Images Base					algazi91	
7	Article	Allen	The relationship between variable selec		Techno			allen74	
3	Article	Aloimonos and Shulman	Learning early-vision computations	1989	Journal o			aloimon	
9	Article	Alter-Gartenberg et al.	Compact Image Representation by Edg		CVGIP: G			alter94	
10	Article	Alter-Gartenberg et al.	Compact Image Representation by Edg		#JOSAa#			alter90	
11	Article	Altes	The {F}ourier-{M}ellin transform and ma		Journal o			altes78	
12	Article	Ammar and Gragg	Superfast Solution of Real Positive Defi	1988	SIAM Jou			ammar88	
13		Analoui and Allebach	New Results on Reconstruction of Conti					analoui92	
14	Article	Anderssen and Bloomfield	A time series approach to numerical diff		Techno			anderss	
15	Book	Andrews and Hunt		1977				andrews	
16	Confer	. Angwin and Kaufman	Image Restoration Using a Reduced Or					angwin88	
17	Article	Appleby et al.	High-performance passive millimeter-w	1993	#OE#			appleby93	
18	Article	Arnold and others	Proton Magnetic Resonance Spectrosco	1992	Annals of			arnold92	
19	Article	Astrom and Bates	Maximum Likelihood and Prediction Err	1980	Automati			astrom80	
20	Confer	. Ayazifar and Lim	Pel-adaptive Model-based Interpolation					ayazifar92	
21	Article	Ayers and Dainty	Iterative blind deconvolution method and	1988	Optics L			ayers88	
22	Master	. Bakir	A filter design method for minimizing blu	1998				bakir98	
23	Article	Bakir and Reeves	A Filter Design Method for Minimizing Ri	2000	#MI#			bakir99	
24	Confer	Bamberger	A Method for Image Interpolation Based	1992				bamberg	
25	Confer	. Bamberger et al.	An Instructional Image Database Packa					bamberg	
26	Article	Banham and Katsaggelos		1997	IEEE Sig			banham97	
27	Article	Bao and Maudsley	Improved Reconstruction for MR Spectro	2007	Medical I	reevesi	2007.05	Bao2007	
28	Confer.	. Barnwell and Mersereau	A Comparison of Some Subjective and	1977				barnwell	
29		Bates and Davey	Towards making shift-and-add a versatil					bates87b	
30		Bates and Lane	Automatic deconvolution and phase retri					bates87	
31	Article	Bates et al	Self-Consistent Deconvolution, (I: T)heory		Optik			bates76	
32	Article	Beaudoin and Beauchemin	A new numerical Fourier transform in d		#SP#			beaudoi	
33	Article	Beck et al	Analysis of (SPECT) including scatter an					beck82	

Presentations

Introducing Document Preparation with LATEX

Stan Reeves

Introduction

LAT_EX

Editors

Automation

Prospe

Beamer

Posters

http://prosper.sourceforge.net/

- Prosper
- Needs the following packages:
 - prosper
 - seminar
 - pstricks

http://latex-beamer.sourceforge.net/

- Beamer
- Needs the following packages:
 - latex-beamer
 - xcolor
 - pgm

Beamer documents

Introducing Document Preparation with LATEX

Stan Reeves

Introduction

LAT_EX

Editors

Automation

Prosper

Beamer

Posters

• Uses the frame environment. A slide is defined within

```
%\begin{frame}
Slide body
%\end{frame}
```

- Preserves document structure
- Very customizable
- Allows for overlays

Beamer documents

Document Preparation with LATEX

Stan Reeves

Introduction

LAT_EX

Editors

Automation

Prosper

Beamer

Posters

Uses the frame environment. A slide is defined within

```
%\begin{frame}
Slide body
%\end{frame}
```

- Preserves document structure
- Very customizable
- Allows for overlays
- Auto-generation of ToCs and ToFs
- Beamer tour: http://latexbeamer.sourceforge.net/beamerexample1.pdf.

Posters

Introducing Document Preparation with LATEX

Stan Reeves

Introduction

Editors

Automation

Prosper

Beamer

- The a0poster.cls class file can be used to create upto A0 size posters.
- It offers the following capabilities
 - Allows for paper sizes A0, A1, A2, A3, & A4
 - Allows font sizes from 12pt-107pt
 - Scales formulas and math symbols
 - The package also creates a postscript header file for dvips to ensure that the poster will be printed in the right size.

a0poster.cls

Introducing Document Preparation with LATEX

Stan Reeves

Introduction

LATEX

Editors

Automation

Prosper

Beamer

Posters

The header of a LATEX poster document looks like:

```
\documentclass[options]{a0poster}
\usepackage{graphicx,pstricks,...}
\begin{document}
```

The following options are available:

landscape	landscape format
portrait	portrait format
a0b	"DIN A0 big"
a0	DIN A0
a1	DIN A1
a2	DIN A2
a3	DIN A3
posterdraft	reduces the postscript output to DIN A4 size.
final	makes postscript output in original size

Stan Reeves

Introduction

LAT_EX

Editors

Automation

Prosper

Beamer

- LyX is a T_EX based WYSIWYM editor
- Available for multiple platforms
- Offers a GUI with menus
- Supports BibT_EX
- Has WYSIWYG table and math editors
- Uses TEX rules for indents, spacing, and hyphenation

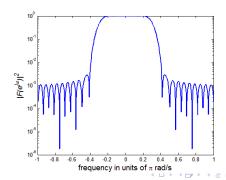
LATEX in plotting tools

Introducing Document Preparation with LATEX

Stan Reeves

Introduction

LAT_EX


Editors

Automation

Prosper

Beamer

- MATLAB supports LATEX
 - Figure labels and other text can be parsed by a Labels interpreter
 - The latex command translates MATLAB matrices into LATEX arrays
 - Can publish a formatted m-file, including LATEX constructs, as a LATEX document

LATEX in plotting tools

Preparation with LATEX
Stan Reeves

Introduction

LAT_EX

Editors

Automation

Prosper

Beamer

- PGFPLOTS is a drawing package for LaTeXbased on PGF/Tikz
- text-based specification of plots
- can actually calculate and evaluate figures

LATEX at Auburn

Introducing Document Preparation with LATEX

Stan Reeves

Introduction

Editors

Automation

Prosper

Beamer

- The Graduate School maintains AU thesis and dissertation style files
- AU allows LaTeX for theses. Formatting restrictions have been relaxed. Color and multimedia as well as hyper-references are possible in PDF files.
- We have a rather inactive tex-users mailing list.

Summary

Introducing Document Preparation with LATEX

Stan Reeves

Introduction

.

LATEX Editors

Automation

Prosper

Beamer

- LATEX is a programming language, not an application
- An abundance of LATEX utilities are available for different platforms
- All LATEX components and packages are free and easily available
- It can be used to generate various document types
- Style files for Auburn University theses are available