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Motivation |

Let
u=G(x;0)

and consider the problem of
finding 6, an input to a math-
ematical model, given v an
observation of solution to the
model at point x.
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Motivation Il

@ Consider the most basic coupled epidemic model

ds(t) . B
9 —as(t)i(t), 5(0) = %
di(t) . . o
— = —as(t)i(t) - Bi(t), i(0) = i
dr(t) _ )
dt —Bi(t), r(0) =ro

where

s = susceptible population density,

i = infected population density,

r = recovered population density,

0 = (o, B) is a random field that may depend on t,/,r and s.
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@ We are interested in estimating the model parameters given
some realizations {u;} 7.

@ There are uncertainties in the governing equation due to
incomplete knowledge of the underlying physics and/or
inevitable errors in measurements.

@ These uncertainties are encapsulated in the model parameters
«, [ and initial and boundary conditions, for some problems
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Brief History

Finite element requires high resolution to capture stochastic
information
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Naive Approach

o First, we explore the forward model.

@ A naive approach is to convert the problem into a deterministic
one by replacing 6 with a statistic and solving analytically or
numerically using finite difference, finite element or finite volume
method. Simple example:

du(t)
Cdt

Naive solution:
u(t) = upe

— Stochastic solution:
* 0 2 4 3 8 10 = UO fQ etdu 6)

@ Perturbation and homogenlzatlon methods have also been
considered.
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Monte Carlo Sampling (MCS) Methods

@ The discovery of MCS algorithms was a huge breakthrough in
better explaining the effects of uncertainties in models.

@ Metropolis-Hastings update step for the inverse case:

plk+1) 0*  with probability min{l, %}
0%  otherwise

assuming a symmetric proposal.

o MCMC sampling has a very slow convergence rate, it is mostly
not suitable for practical purposes.

@ MCMC samples are often correlated
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Karhunen-Loeve Expansions |

@ A very successful approach also considered stem from the
Kosambi—Karhunen—Loéve theorem

@ For a random field 6(t), let 14(t) be the mean of the process
and let C(t,s) = cov(f;,0s) be its covariance function. The
Karhunen—Loeve expansion of 6, is

0 (w) = po(t) + Z VAidi(£)8i(w)

where ¢;'s are the orthogonal eigenfunctions and \;'s are the
corresponding eigenvalues of the eigenvalue problem

/T C(t,s)on(s)ds = Nion(t),  teT
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Karhunen-Loeve Expansions ||

and
/ (0u(0) — 1a()) (1)t

are mutually uncorrelated random variables with zero mean and
unit variance.

@ KKL modes are the principal components of the covariance
kernel and are expensive to compute

o KKL requires prior knowledge of the covariance kernel C(t,s)
and the underlying distribution.
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Pause and Ponder

o Naive approach does not carry forward any stochastic
information

@ Monte Carlo Simulation is very slow

@ Karhunen-Loeve expansions require prior knowledge of the
underlying distribution, which is not known for many problems.

What then is a way forward?
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Polynomial Chaos

@ Generalized polynomial chaos, in many cases, is arguably the only
feasible method for stochastic simulations of complex systems [Xiu,
2010] [1]

Theorem (Cameron & Martin, 1947)

Let L?(, A, P) be a Hilbert space of real-valued random variables and
D C L%(Q, A, P), a complete subspace. Suppose for any n € N,

Bn(®) ={f(&, - ,&m) : f an m-variate polynomial of degree < m

, & €D, ie[m], me N} and {Bn}nen C L2(Q, A, P) is a strictly
increasing complete subspace and Gaussian for n =1 . Then, there exists
{Dn}nen such that

D, = L%(Q, (D), P)

P

Il
=)

n

Specifically, for o(D) = A, @, D, = L*(Q, A, P)
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Generalized Polynomial Chaos

@ The work of [Xiu & Karniadakis, 2002] is pivotal in understanding,
applying and generalizing polynomial chaos method. They coined the
term generalized polynomial chaos expansion

o Let {&,}nen be a sequence of (not necessarily identically distributed)
basic random variables satisfying conditions

Q E[|&|M < oo forallnymeN
Q F¢,(x) = P(&, < x) is continuous for each n € N

Definition

A distribution is said to be determinate, in the Hamburger sense (aka
solvability of the moment problem if the distribution function is uniquely
defined by the sequence of its moments

E[¢™] = /R X dFe(x)
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Generalized Polynomial Chaos

With conditions (1) and (2) and the preceding definition, it follows that:

The sequence of orthogonal polynomials associated with a real random
variable § satisfying the two conditions above is dense in L?(R,B(R), dF¢)
if and only if the moment problem is uniquely solvable for its distribution.

Following this development and other equivalent formulations, [Ernst etal,
2012] proved conditions under which a random vector admits generalized
polynomial chaos expansion
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Generalized Polynomial Chaos

Theorem

If the distribution function F¢ of a random vector § = (&1, -+ ,&n) with
continuous distribution and finite moments of all orders satisfies one of
the following conditions, then the multivariate polynomials in &1, - -+ &,
are dense in L?(Q,0(€), P). In this case any random variable

¢ € L2(Q,0(&), P) is the limit of its generalized polynomial chaos
expansion, which converges in quadratic mean.

@ The distributiion function F¢ has compact support, i.e., there exists a
compact set S C R" such that P(({ € S) =1

@ The random vector is exponentially integrable, i.e., there exists ¢ > 0
such that

E(e ) < oo
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Wiener-Askey Scheme

Courtesy: [Ernst etal, 2010]

Distribution polynomials | density

Gaussian Hermite | p(§) = —6_5 /2

Gamma(a, A) Laguerre | p(&) = E(a 7 (A~ le=A8
. 8

Beta(a, 3) Jacobi | p(€) = seiitha T

Uniform(a, 3) | Legendre | p(&) = 41—

Arcsin Chebyshev | p(§) = \/11?
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Transport Maps

@ Polynomial chaos expansion method is not without faults

@ Its computational complexity increases fast with increase in the
number of parameters 6 [Moselhy & Marzouk, 2012]

@ Transport maps were introduced to mitigate the computational
burden involved modeling with polynomial chaos

@ A transport map, T : R" — R"” is a deterministic transformation
that pushes forward p to v, yielding [Parno & Marzouk, 2012]

v(B) = u(T*(B))

@ Uniqueness of T is ensured by assuming the triangular
formulation

Tl (.’1,‘1) “

Ty(1,x2)
T(z1,22,...,2q4) = | .

[Td(wl7w27""md)J
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Numerical Experiments

First, we consider the case where § is a scalar random variable

6 ~ Uniform(0, 1)

Uniform True distribution vs PC distribution

140 PCfit
= Fye distribution

Chinedu. E.; Hans-Werner (Auburn)

500

400

300

200

100

0 ~ exp(0.5)

Exponential True distribution vs PC distribution

= PCfit

TFue distribution
1 2 3 ) 5 6 7 8
JMM 2022

18 /20



Numerical Experiments

Consider the exponential decay model given by the differential
equation

du(t; 0

% = —0u(t,0); g = ¢

where 8 > 0 is a random variable.

10
08
-
.“""--.
06 S
-

04

= mc mean soln

—— mc 95th perc
02 — mc 5th perc

=== pc sample soln
00 - === pc 95th perc

= |=== pc 5th perc
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Conclusion

@ Most, if not all biology inspired mathematical models depend on
certain random parameter(s)

@ Successes in making inference from or validating these models
depend on how well the stochastic information from these
parameters are propagated into the state variables

@ We demonstrated that transport maps are powerful and handy in
this regard

@ In progress, we are looking to leverage the expressive power of
Deep Neural Networks in constructing transport maps
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