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Abstract. In this paper, the singularity expansion method (SEM) is used to describe the 
electrostatic charge distribution on an array of thin linear antennas placed in a uniform 
electric field. The SEM, which has primarily been used to analyze transient scattering 
problems, decomposes the electromagnetic interaction process into various quantities such 
as singularities and modes. Using the SEM, the step plane wave induced transient current 
on the array is expanded in terms of its singularities (poles) in the Laplace transform 
(complex frequency domain.) The continuity equation is applied to the induced current 
expression to obtain the transient charge. The electrostatic charge distribution on the array 
is found by using the final value theorem on the transient charge expression. It is well known 
that the SEM factorization of a single linear element reveals that a single pole exists in the 
fundamental resonance region (near wL/c = •r, where L is the length of the scatterer). For a 
two-element array, two poles are observed in the fundamental resonance region. This trend 
continues such that an •element array has n poles in the fundamental resonance region. 
Associated with each pole is a unique modal current and corresponding charge distribution. 
For example, one of the two fundamental resonance region poles of the two-element array 
produces half-wavelength sinusoidal current distributions whose directions are the same on 
one scatterer but opposite on the other. The remaining fundamental resonance region pole 
produces half-wavelength sinusoidal current distributions whose directions are the same on 
both scatterers. Corresponding to each mode is a coupling coefficient which determines how 
much a particular mode couples into the response. A generalization of these results for an 
•element array will be given. Furthermore, the electric polarizability is derived in terms 
of the SEM electric charge descripti. on. The value of this research lies in the elegance and 
strength of the SEM to factor a problem into various quantities which depend on different 
variables of the problem. By using the SEM to analyze the •element planar array, a much 
deeper comprehension of the fundamental aspects of the electrostatic interaction process is 
achieved. 

1. Introduction 

Understanding how the elec[romagnetic charging 
of a system affects an electrical system's characteris- 
tics is a topic being given increased attention. This 
is due mainly to the role quasi-static charging may 
play in the possible degradation of the system's per- 
formance. In the specific case of antennas placed 
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on outdoor platforms, the adjacent terrain and the 
Earth's fair weather electric field dictate how the 

electrostatic charge will be distributed. By using 
the singularity expansion method (SEM) described 
here, a more complete understanding of how the 
antenna system responds to both electrostatic and 
time-varying electromagnetic fields can be accom- 
plished. This type of information is valuable to the 
design engineer in assessing lightning hazards, the 
possibility of coronal currents, and ground protec- 
tion schemes [Uman, 1969]. - 

The singularity expansion method allows one to 
treat a conducting body in a manner similar to that 
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used in classical circuit theory. In circuit theory, •he 
response of a linear circuit excited by an arbitrary 
waveform may be determined by knowledge of the lo- 
cation of any singularities of the response function as 
well as the corresponding residues. In a distributed 
system (e.g., a conducting body), an infinite number 
of singularities exist, and associated with each is a 
natural modal current and charge distribution. For 
an arbitrary excitation, one need only determine the 
extent to which each natural mode has been excited. 

This is determined by the coupling coefficient asso- 
ciated with a given natural mode [Riggs et al., 1989]. 

The principal advantage of the SEM is its ability to 
break down the electromagnetic interaction process 
into meaningful parameters such as poles, modes, 
and coupling coefficients. Definitions for these SEM 
parameters will be presented, employing a method of 
moments approximation to the continuous operator 
electric field equation (EFIE) in terms of the current 
induced on the array. The research described here 
principally focuses on the mathematical development 
of the SEM that will describe the antenna system's 
behavior for several cases. The results show very 
good agreement when compared with the method of 
moments (MOM) electrostatic analysis. The main 
intent of this work is to provide a clearer view of the 
fundamental aspects of electrostatic interaction than 
is available through conventional analysis methods. 

Theoretical Development 

As a starting point to the SEM discussion, con- 
sider the array composed of perfectly conducting thin 

cylindrical elements, as shown in Figure 1. Imping- 
ing on this array is some incident field generated by 
a distant source. The impinging field induces current 
and charge on the elements, and these sources in turn 
radiate a scattered field. Owing to the perfectly con- 
ducting nature of the elements, the total tangential 
electric field on the surface of the conductors must 

be zero; that is, the tangential component of the in- 
cident electric field must exactly cancel the tangen- 
tial component of the scattered electric field. Utiliz- 
ing standard potential theory [Havvington, 1961], the 
scattered electric field can be expressed in terms of 
an integro-differential operation on the induced cur- 
rent. This expression and the boundary conditions 
result in an electric field integral equation (EFIE) 
in terms of the unknown surface currents on the the 

elements [Pocklington, 1897]. 
An approximate solution to the EFIE can be ob- 

tained by employing the method of moments [Hav- 
rington, 1968]. A pulse expansion of the unknown 
current I and pulse testing of the EFIE yields the 
familiar network matrix equation for the induced cur- 
rent cast explicitly in terms of s, 

-- _ 

V(s) - Z(s)I(s) (1) 

where Z(s) is the N x N system impedance matrix, 
[(s) is the system current response vector of length 
N, and V(s) is the system voltage excitation vector 
of length N. The solution of (1) can be written in 
the form 

[(s) - adj Z(_s)V(s) (2) 
der Z(s) 

where the inverse of Z(s) has been expressed as 

z I 

a 

Figure 1. An n-element array. 
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•aj z(•) (3) z-•(•) - a• z(•)' 
The singularities (poles) of the system are those com- 
plex frequencies that force the determinant of Z(s) 
to be zero. These singularities, denoted by ss, are 
termed natural resonant frequencies since they result 
in nontrivial solutions to 

Z(•)•(•) = 0. (4) 

These frequencies are "natural" in the sense that at 
these frequencies, the scatterer can have a response 
without any excitation. 

On the basis of the physical nature of the scat- 
terer, several conclusions can be deduced regarding 
the location of the natural resonances in the com- 

plex plane. To ensure the scatterer has a decaying 
response, the poles must lie in the left half plane. 
Furthermore, except for those located on the nega- 
tive real axis, the poles must occur in conjugate pairs 
to guarantee a real time domain response. Finally, 
no poles can lie on the jw axis because the body is 
losing energy through radiation. 

When the poles and corresponding residues are 
known, the inverse of the system impedance matrix 
Z-X(s) can be expanded in a singularity series [Boas, 
1987], hence the acronym SEM. By performing such 
an expansion, Z-•(s) can be written as 

Rs + possible entire function z-•(•) - • •_ • (•) 
where Rs is the residue matrix associated with the 
ath singularity. Note that in the expansion, the sin- 
gularities are assumed to be poles of the first or- 
der. This assumption is valid for perfectly conduct- 
ing spheres and thin cylindrical wires [Baum, 1971], 
and it has been substantiated numerically. The inclu- 
sion of the entire function is required for convergence 
of the series [Baum, 1976]. Without the entire func- 
tion, the expansion cannot represent any essential 
singularities that may exist at infinity in the complex 
plane. Since the elements of Z-X(s) are of the form 
e '•, singular behavior may occur as s --• oo [Tesche, 
1973]. However, for the types of objects considered 
here, the inclusion of the entire function is not nec- 
essary. 

The next step in the formulation of the SEM de- 
scription of the transient current is to calculate the 
residues. The residue matrix Rd at ss can be evalu- 
ated via the Cauchy residue theorem 

a• _ 2• z-•(4 d• (•) 

where cs denotes a contour enclosing the pole at 
s - ss. It has been shown by Baum [1971] and oth- 
ers that Rs is dyadic; that is, its elements can be cal- 
culated as the outer product of elements taken from 
two column vectors. In addition to being dyadic, Rs 
is symmetric because the EFIE was used in the initial 
formulation [Riggs, 1985]. As a result, the row and 
column vectors of Rs are identical. Exploiting the 
dyadic and symmetric properties, Rs can be written 

where Ms 'is the ath natural modal current distri- 
bution, and the superscript 'T' denotes the matrix 
transpose operation. The parameter/3s is a complex 
proportionality constant which is chosen so that the 
maximum value of Ms is real and unity. 

Using the factored form of Rs in (2), the expres- 
sion for the induced current becomes 

- • v(•). (8) 
S -- S s 

__ 

The voh•õe excitation vector V(s) c•n be writte• 
more specifically as 

v(•) - f(•) •(•) (0) 

where f(s) is the functional form of the system ex- 
citation vector (impulse, step,...), and A(s) is the 
geometry dependent impulsive excitation vector. If 
plane wave excitation is assumed, then the elements 
of A(s) are of the form b exp (-s•-), where b is 
proportional to the component of the incident elec- 
tric field along the body, h is a unit vector in the 
direction of propagation, and • is a position vector. 

Using (9)in (8) yields ' 

•(•) - • f(•) • • • x(4. (•o) 
S-- S s 

The SEM parameter known as the coupling coeffi- 
cient appears in (10) and is defined as 

.•(•) - • • •(•). (•) 

This parameter, which is dependent on the geome- 
try of the scatterer as well as the polarization and 
propagation direction of the incident wave, governs 
how much the ath pole-mode pair couples into the 
response. Substituting (11) into (10), the current 
response vector becomes 

•(•)- ••(•).•(•) •-•-•. (•2) 
S -- S• 
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To obtain an expression for the charge, the conti- 
nuity equation ism employed ß 

_ _! v. 7(,). 

Combining the continuity equation with (12), the ex- 
pression for the charge becomes 

- _ • s(s- s•) - f(s)r(s) (14) 
where P(s) is the "network" impulse charge response 
and 

__ 

- v. (is) 

defines the c•th natural charge mode [Riggs et al., 
1989]. Through a partial-fraction expansion of the 
[s(s - sa)] -• term, the expression for the induced 
charge can be written as 

- ] 
The first term of (16) can be neglected since there is 
no singularity at s - 0 in the complex plane [Baum, 

In order to determine the electrostatic charge dis- 
tribution, an appropriate excitation function f(s) 
must be chosen so that the array is immersed in a 
uniform electric field. Although many different exci- 
tation functions would result in the same final charge 
distribution, a simple step excitation will be used 
here. Thus, substituting s -i in for f(s) and neglect- 
ing the first term, (16) becomes 

Again, expanding the [s(s - s=)]-I term of (17) in 
partial fractions yields 

Applying the final value theorem to obtain the elec- 
trostatic charge distribution results in 

oo)- 

Using (19), the electric polarizabil. ity can be ex- 
pressed in terms of the SEM parameters. If an un- 
charged conducting body is placed in a uniform elec- 
tric field, then the resulting net dipole moment p is 
given by 

p -- f$ rp(:r, y,z)d$ (20) 
where r - z&= + y•y -• ZSz is the radius vector from 
the origin to a point on the surface $ of the conduc- 
tor, and p(z, y,z) is the surface charge density on 
$ [Harrington, 1968]. When thin cylindrical bodies 
are considered, (20) reduces to a line integral. Us- 
ing the SEM description for the charge in (19), the 
surface integral can be approximated as 

where N represents the number of equal length nu- 
merical segments on the thin cylinder, A is the length 
of each segment, and r• is the radius vector from the 
origin to the center of the nth segment. The quan- 
tity (D•)• is the value of the ath charge mode on 
the nth segment. The dipole moment is proportional 
to the impressed field E i which produces the charge 
•(•, y,z); •herefore a polarizabili•y tensor [X] may 
be defined as 

To find a particular element of [X], say, X•y, P• -- 
x• is •ouna •or an applied •iela (s•, s•, s•) - 
(0, 1, 0). 

3. Numerical Results 

In this section, the electrostatic characterization 
of two-, three-, four-, and five-element arrays will 
be given. The elements of the planar arrays under 
consideration each have a commonly used radius-to- 
length ratio, a/L, of 0.005. For the two- and three- 
element arrays, two cases will be presented where the 
separation distance-to-length ratio, d/L, is 0.10 and 
1.0. The results for the four- and five-element ar- 

rays will be limite•l to the case where d/L is 0.10. 
The radius a and the separation distance d param- 
eters are illustrated in Figure 1. The electrostatic 
charge distribution on these arrays using the SEM 
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will be compared with the direct M OM solution for 
the same obtained from the electrostatic scalar po- 
tential equation. In addition to presenting the elec- 
trostatic charge distribution and electric polaris. abil- 
ity, a discussion of some relationships among the 
the SEM parameters of the n-element arrays will be 
given. 

Before presenting the results for the two-, three-, 
four-, and five-element arrays, it is interesting to give 
a brief discussion of the SEM parameters associated 
with a single linear conductor. An SEM characteri- 
zation of a single linear element reveals that the poles 
of this object occur in layers roughly parallel to the 
jw axis. To distinguish among the poles in the s 
plane, they are labeled with two indices, sl,,•, where 
I denotes the layer and n refers to the poles in that 
layer. The poles in the fundamental layer, 1 - 1, 
reside very close to the jw axis. Only these poles 
contribute significantly to the response of the scat- 
terer, since their nearness to the jw axis implies a 
small damping constant. Thus the poles with a large 
real part (g2), such as those in the second layer, are 
normally not considered, since their effects are negli- 
gible due to large damping constants. The imaginary 
parts of the fundamental layer poles, when multi- 
plied by the length of the wire L and divided by the 
speed of light c, occur at approximately k•, where 
k is an integer. The first pole of the first layer, sxx, 
lies near wL/c -- •'. Singularities residing in this 
general vicinity are termed fundamental resonance 

region poles. Subsequent poles in the first-layer are 
harmonics of the fundamental and have imaginary 
parts near 2• (sx2), 3• (s•3), etc. Another way to 
view the location of the first-layer poles is to note 
that the imaginary parts occur at frequencies where 
the length of the object is an integer multiple of a half 
wavelength. This relationship is shown as follows: 

where • is the free space wavelength. 
As was mentioned previously, associated with each 

pole is a unique modal current distribution. The 
modes for poles lying in the first layer have quasi- 
sinusoidal current distributions along the length of 
each element. The fundamental resonance region 
pole is observed to have a quasi-half-wavelength si- 
nusoidal current distribution, as would be expected 
from (23). Similarly, second harmonic poles have a 
full wave quasi-sinusoidal current distribution. Al- 
though (23) describes the nature of the distribution 
for a given harmonic, what is not so obvious is the 
direction of the current flow on the array associated 
with a given mode. Examining the location of the 
poles and the characteristics of their corresponding 
modal current distributions reveals much about the 

fundamental electromagnetic interaction process. 
Having briefly summarized the SEM parameters 

for the single element, the pole-mode relationships 
for the two-, three-, four-, and five-element arrays 
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Figure 2. The pole positions for the first five harmonics of the (a) two-element array and (b) 
three-element array. 
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can now be discussed. The SEM factorization of 

the two-element array reveals that two poles reside 
in the general location of the complex plane where 
the isolated element has a single pole. Thus, in the 
fundamental resonance region, the two-element array 
has two poles. Furthermore, two poles exist in each 
of the higher-order harmonic regions as well. Fig- 
ure 2a illustrates the pole positions for the first five 
harmonics of the two-element array. As one might 
anticipate, the three-element array has three poles 
in the complex plane where the single element has 
only one. The pole positions for the three-element 
array are shown in Figure 2b. This trend continues 
as more elements are added to the array such that 
an n-element array has n poles in the region where 
the isolated element only has one. 

The addition of a singularity for each element 
added to the array provides for some interesting 
pole-mode relationships. The two poles for the two- 
element array can be identified as either a radiation 
pole or a transmission line pole, depending on the 
directions of the modal currents which flow on the 

elements of the arrays. The radiation pole, desig- 
nated with the asterisk in Figure 2a, has modal cur- 
rents that flow in the same direction on both ele- 

ments. This pole, which is located farthest from the 
jw axis, is low Q (defined as the ratio of stored en- 
ergy to dissipated energy) [Van Valkenburg, 1964]; 
therefore any energy that is coupled into this mode 
will be rapidly radiated into space. In contrast, the 
transmission line pole has modal currents that flow in 
opposite directions. In accordance with Kirchhoff's 

current law, a symmetric two-wire array with 1 A 
flowing on one element must have 1 A flowing in the 
opposite direction on the other element. The trans- 
mission line pole, designated with crosses, is located 
very close to the jw axis and therefore is high Q (low 
damping constant). The real part of the modal cur- 
rent distributions associated with the fundamental 

radiation and transmission line poles are shown in 
Figure 3. The imaginary part of the modal current 
is not shown since it is very small relative to the real 
part. The imaginary component of the modal cur- 
rent is a result of the wire having a finite diameter. 
In the limit as the diameter of the wire goes to zero, 
the modal current will become purely a real quantity. 

The three-element array, as previously mentioned, 
has three poles in the area where the isolated ele- 
ment has only one. By inspecting Figure 2b, one 
can observe the positions of these singularities. The 
three-element array also has a radiation pole and a 
transmission line pole, designated by the asterisks 
and crosses, respectively. These poles have the same 
characteristics of the radiation and transmission line 

poles of the two-element array. Of the pole trio, the 
radiation pole resides farthest from the jw axis and 
the transmission line pole lies closest. The radiation 
pole has modal currents that flow in the same di- 
rection on all three elements. Furthermore, it has 
the highest damping (lowest Q) of the three poles. 
The transmission line pole has modal currents of 0.5 
A (amplitude) flowing in the same direction on the 
outer wires and i A flowing in the opposite direction 
on the center element, which again satisfies Kirch- 

0.5 

-0.5 

-1 
0 

Transmission,/ 
Line Pole 

0.5 

-0.5 

Pole 

Transmission 
Line Pole 

0.5 1 0 0.5 
z/L, Element 1 z/L, Element 2 

Figure 3. The real modal current distributions for the the fundamental radiation and transmission 
line poles of the two-element array. 
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hoff's current law. Because of its close proximity to 
the j•0 axis, the transmission line pole has a small 
damping constant and therefore a high (•. The re- 
maining pole is referred to here as the zero-mode 
pole. As its name suggests, the zero-mode pole has 
no current on the center element. In Figure 2b, this 
pole is designated by open circles. The real parts 
of the modal current distributions of the the funda- 

mental radiation, transmission line, and zero-mode 
poles of the three-element array are shown in Fig- 
ure 4. It should be noted that the poles of the arrays 
are system poles; that is, a pole does not correspond 
to any particular element of the array but rather to 
the entire array. 

The four- and five-element arrays possess some of 
the modes of the two- and three-element arrays as 

well as having some unique modes of their own. As 
expected, the four-element array has four poles in a 
given harmonic region, which means it has four dis- 
tinct modal distributions. Two of these poles are 
the familiar radiation and transmission line poles. 
These poles have the same characteristic modal cur- 
rent distributions as discussed previously. The ra- 
diation pole has modal currents flowing in the same 
direction on each element, and relative to the posi- 
tions of the other three poles, it is located farthest 
from the j•0 axis. An inspection of the modal current 
distribution for the transmission line pole reveals 1 
A flowing in opposing directions on the inner two el- 
ements and 0.5 A flowing in opposing directions on 
the outer elements. The other two distinct modal 

current distributions of the four-element array are 
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Figure 4. The real modal current distributions for the fundamental radiation, transmission line, 
and zero-mode poles of the three-element array. 
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Figure 5. The magnitude of the normalized electrostatic coupling coefficients for the (a) two- 
element and (b) three-element arrays. The number following the r represents the harmonic of the 
radiation pole. 

interesting, but a physical interpretation requires a 
more in-depth consideration of the information. The 
current distributions of these modes are oriented such 

that the net current flowing over all four elements is 
zero. 

As one would expect, the five-element array has 
five distinct modes. Three of these are associated 
with the three-element array. Thus, in addition to 
two more singularities, the five-element array has a 
radiation pole, a transmission line pole, and a zero- 
mode pole. These three poles have the same charac- 

teristic modal distributions described earlier for the 

three-element array. A physical interpretation of the 
modes of the remaining two singularities is difficult. 
One significant feature of these modes is that their 
distributions, when summed over all five elements, is 
approximately zero. 

As was mentioned in the previous section, the cou- 
pling coefficient governs how much of each mode cou- 
ples into the response. The electrostatic coupling 
coefficient for the two- and three-element arrays as 
a function of the angle of incidence 0 is shown in 

10 

SEM 

-- MOM 

10 

-10 ' -10 ' 
0 O.5 1 0 O.5 

z/L Element 1 z/L Element 2 

Figure 6. The electrostatic charge distribution for the two-element array d/L = 0.10, all - 0.005. 
The applied electrostatic field is oriented in the positive z direction (0 = 90ø). 



MOONEY ET AL.' CHARACTERIZING AN N-ELEMENT PLANAR ARRAY 1019 
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Figure 7. The electrostatic charge distribution for the two-element array d/L -- 1.0, all -- 0.005. 
The applied electrostatic field is oriented in the positive z direction (0 -- 90 ø). 
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Figure 8. The electrostatic charge distribution for the three-element array d/L -- 0.1, all • 0.005. 
The applied electrostatic field is oriented in the positive z direction (0 = 90ø). 
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Figure 5. The angle of incidence and polarization 
of the incident electric field is defined in Figure 1. 
By observing Figures 5a and 5b, one can see that 
only the odd harmonics of the radiation pole cou- 
ple significantly into the response. Furthermore, the 
amount each radiation pole couples into the response 
decreases with an increase in the order of the har- 
monic. No mode significantly couples into the re- 
sponse beyond the seventh harmonic. The strong 
coupling aspect of the radiation pole is due to the 
fact that its modal currents flow in the same direc- 
tion on all the elements. None of the 'modes of the 
even harmonics couple into the response owing to 
their distributions having odd symmetry about the 
center of each element and the excitation being an 
even function. Furthermore, except for the radiation 

pole, the modes of all the other singularities are ori- 
ented such that they effectively cancel one another. 
As an example, observe the modal current distribu- 
tion associated with the •.ero-mode pole of the three- 
element array in Figure 4. It is obvious that the cur- 
rents on the outer elements cancel each other, and 
the current on the center is already •.ero. A similar 
observation can be made about the transmission line 
mode. 

The electrostatic charge distributions for the two- 
, three-, four-, and five-element arrays are shown in 
Figures 6 through 11. The electrostatic responses 
were calculated using a unit step plane wave polar- 
i•.ed in the positive z direction (0 - 90ø). Only the 
fundamental, third, and fifth harmonics were used in 
computing the responses. The SEM electrostatic re- 
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Figure 9. The electrostatic charge distribution for the three-element array d/L = 1.0, all = 0.005. 
The applied electrostatic field is oriented in the positive z direction (0 = 90ø). 
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Figure 10. The electrostatic charge distribution for the four-element array d/L = 0.10, all - 
0.005. The applied electrostatic field is oriented in the positive z direction (0 = 90 ø). 

sponses are compared with the direct MOM solution 
of the electrostatic scalar potential equation. From 
the results, it is obvious that the SEM agrees well 
with the direct MOM solution in all cases. 

The electric polarizability for the two-, three-, 
four-, and five-element arrays is shown in Table 1. 
The values shown in this table represent the Xzz ele- 
ment of the polarizability tensor [X], since the elec- 
trostatic responses were calculated using an electric 
field polarized in the positive z direction. It is inter- 
esting to note that the polarizability increases with 
the number of elements in the array. This trend can 
be explained by noting that the effective surface area 
of the system increases as elements are added. Also 
shown in Table 1 is the polarizability Xz• for the two- 
and three-element arrays with varying distance-to- 
length ratios. There seems to be an increase in Xzz 
as d/L is increased. Future work in this area will 
consider if this trend continues as d/œ is increased. 

4. Practical Applications 

Prior to listing some of the possible applications 
that the SEM technique could be used for, it is im- 
portant to underscore the fundamental reason that 
SEM lends itself to the design phase of the system 
(an •-element array in this case). The SEM anal- 
ysis allows the user to extract information about 
the specific behavior of the entire system for any 
electrical stimuli by virtue of the "pole constella- 
tion plot." This pole constellation plot parallels the 
transfer function (usually a•si•n•a •{(s)) • lin- 
ear system's input/output relationship. In the case 
considered here, this specifically allows the system's 
behavior to be easily predicted for any given electri- 
cal excitation. 

Assuming the array beam pattern, spacing, and 
electrical feed specifications are known, one of the 
next features that should be characterized is the sys- 
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Figure 11. The electrostatic charge distribution for the five-element array d/œ - 0.10, a/œ = 
0.005. The applied electrostatic field is oriented in the positive z direction (/• - 90 ø). 

tem's overall response to lightning. This can be done 
in a straightforward manner either by convolution of 
the time domain lightning current signature at the 
point of attachment with system time domain trans- 
fer function (usually designated h(t)) or by multi- 
plication of the lightning current signature's Laplace 
•r•orm •a •he •y•em'• •r•er •u•c•io• (H(•)) 
previously discussed. 

In contrast, to obtain a transient result from a fre- 
quency domain MOM approach, the matrix equa- 
tion in (1) must be solved over a wide range of fre- 
quencies. The frequency domain data generated from 
this repetitive process is then inverse Fourier trans- 
formed to produce the desired time domain result. 
Although the inverse Fourier transform can be com- 
putationally intensive, its computation time is negli- 
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Table 1. The Xzz Element of the Polarizability Tensor 
IX] for the Two-, Three-, Four-, and Five-Element 
Arrays With Varying Distance-to-Length (d/L) 
Ratios 

Elements in the Array 

d/L Ratio Two Three Four Five 

0.1 2.084 2.796 3.449 3.887 

0.25 2.403 2.523 ...... 

0.5 2.468 2.918 ...... 

1.0 2.641 3.780 ...... 

Polarizability is in units of picofarads times square 
meters. 

gible compared with the time required to repetitively 
build and solve the matrix equation repeatedly. This 
time-consuming feature is one of the primary disad- 
vantages to using the frequency domain MOM ap- 
proach for the computation of transients. 

A second feature of using the SEM is its prediction 
of the peak static charge density on any general radi- 
ating system and specifically in the n-element array 
already presented. This provides the design engi- 
neer with an understanding of the likely attachment 
points of lightning. It should be noted here that 
even though the most probable locations for light- 
ning strikes can be identified, in no way is this a 
guarantee that it will not strike some other part of 
the system, and therefore the entire system should 
be carefully investigated. 

Additional applications of the SEM technique in- 
clude determining the polarizability of the structure. 
By doing so, the general effect the structure would 
have on the Earth's fair weather field or other pos- 
sible man-made electromagnetic quasi-static fields 
could be predicted (the polarizability of a structure 
is indicative of the direction quasi-static E-field lines 
would bend when in the proximity of the system). 
This would give the engineer practical insight into 
the structure's effect on local field strength measure- 
ments. 

5. Conclusions 

In this paper, the singularity expansion method 
was used to determine the electrostatic charge dis- 
tribution on an •-element planar array. The re- 

suits obtained using the SEM agreed well with the 
more conventional MOM solution of the electrostatic 

scalar potential equation. In addition to yielding 
good results, the SEM provided additional informa- 
tion on the systern's characteristics that many previ- 
ously used techniques could not. 

Through numerical experimentation on planar ar- 
rays of two, three, four, and five elements, some in- 
teresting relationships among the SEM parameters 
were observed. On the basis of these results, some 
general statements concerning the SEM characteris- 
tics of an •-elernent array can be made. An inter- 
esting and very important SEM characteristic of the 
•-element array is that it has n poles in the regions 
where the single element has only one. These poles 
are system poles and related to any one particular el- 
ement in the array. Furthermore, two of the n poles 
can be classified as either a radiation pole or a trans- 
mission line pole, depending on the direction of the 
corresponding modal current distributions. The re- 
maining •-2 poles also have unique modal current 
distributions, but physical interpretation of the be- 
havior of these modes becomes increasingly difficult. 
Moreover, the •-element array possesses all of the 
poles and modes of the •-2 array plus two additional 
distinct modes. Through an inspection of the cou- 
pling coefficients associated with these modes, only 
the odd harmonics of the radiation pole significantly 
couple into the electrostatic response. Furthermore, 
the fundamental radiation pole dominates this re- 
sponse. The higher-order modes are required to ac- 
curately represent the static charge response near the 
ends of the conductors. 
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