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Treatments of interelectronic repulsion that avoid four-center integrals have been incorporated in ab
initio, electron-propagator calculations with diagonal self-energy matrices. Whereas the formal
scaling of arithmetic operations in the propagator calculations is unaffected, the reduction of storage
requirements is substantial. Moreover, the scaling of integral transformations to the molecular
orbital base is lowered by one order. Four-index, electron-repulsion integrals are regenerated from
three-index intermediates. Test calculations with widely applied self-energy approximations
demonstrate the accuracy of this approach. Only small errors are introduced when this technique is
used with quasiparticle virtual orbitals, provided that conventional techniques of integral evaluation
are used in the construction of density-difference matrices. © 2009 American Institute of Physics.

[doi:10.1063/1.3238243]

I. INTRODUCTION

Electron propagator theory]_5 (EPT) provides a founda-
tion for the efficient and accurate evaluation of ionization
energies and electron affinities of large molecules. Diagonal
self-energy, or quasiparticle, approximations to the electron
propagator are frequently used to determine correlation and
relaxation corrections to Koopmans’s theorem” results for the
calculation of electron binding energies. Electrons assigned
to canonical Hartree—Fock’® (HF) orbitals are thereby sub-
jected to a correlated, energy-dependent potential repre-
sented by the diagonal elements of the self-energy matrix.
Several approximations of this kind have been characterized
extensively in numerical tests and have been applied to many
molecules and ions.”"?

Most implementations of many-body methods such as
EPT are expressed in terms of formulae that involve electron
repulsion integrals (ERIs) in the molecular orbital (MO) rep-
resentation. For low-order perturbative approximations, one
of the most computationally intensive tasks is the evaluation
of these quantities. In conventional algorithms, ERIs in the
MO base are stored on external disks. This strategy is advan-
tageous provided that input/output operations are performed
efficiently. At the cost of performing more arithmetic opera-
tions, direct or semidirect algorithms13 14 may facilitate EPT
calculations on larger species when disk storage of ERIs is
infeasible. (The term direct refers to embedding the recalcu-
lation of ERIs in the formation of various intermediate ma-
trices.) Transformation of ERIs from atomic-orbital (AO) to
MO bases scales formally as N3, where N is the dimension of
the former base. Therefore, for many low-order, perturbative
EPT methods, this transformation of four-index quantities
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constitutes the computational bottleneck, especially in con-
ventional algorithms that avoid the recalculation of ERIs in
the AO base.

Attempts to remove bottlenecks that arise from the rank
of the ERI matrix may be founded on improved representa-
tions of electron densities or reductions in active orbital
spaces. In the latter category, one finds a variety of improved
virtual orbital techniques, such as a recent procedure that is
based on density difference matrices that accompany low-
order electron propagator methods.”>'® In the former cat-
egory, systematic elimination of redundant information in the
base of electron densities generated by AOs is represented by
the Cholesky decomposition approach.17 Alternatives con-
sider the expansion of AO-based densities in terms of auxil-
iary functions. Density fitting (DF) methodology played a
prominent role in the development of programs that solve
Kohn-Sham (KS) equations.'® In correlated, ab initio calcu-
lations where numerous electron densities require represen-
tation, related strategies, dubbed resolution-of-the-identity
(RI) methods, were successfully implemented.19 Many recent
publications considered the numerical calibration and rela-
tive advantages of Cholesky decomposition and RI tech-
niques in the execution of well-known self-consistent field
and perturbative methods.”**

DF-RI methods offer a way to overcome arithmetic or
storage obstacles to the execution of low-order, perturbative
EPT calculations that arise, respectively, from integral trans-
formation or the quantity of ERIs. To provide clear criteria
for assessing the reliability of this approach, comparisons
will be made with previous EPT calculations that employed
HF reference states. Because the resulting algorithms do not
require the evaluation of four-center ERIs in the AO base,
they may be conveniently implemented in codes (see, for
example, Ref. 29) that are designed chiefly for the solution
of KS equations and that possess optimal routines for the
evaluation of three-center integrals. This strategy also is ad-
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vantageous for AO-based, molecular electron propagator cal-
culations that employ KS reference determinants instead of
their HF counterparts.30

This manuscript is organized as follows. In Sec. II, basic
aspects of DF or RI techniques are discussed and their rel-
evance to the execution of electron propagator calculations is
established. The organization of the calculations is consid-
ered in Sec. III. In Sec. IV, the numerical performance of the
method is analyzed for second-order and partial third-order
quasiparticle approximations of EPT. Final remarks are given
in Sec. V.

Il. METHODS
A. ERIs in EPT formulae

In the diagonal, or quasiparticle, approximation to the
electron propagator, the Dyson equation is reduced to

w,=€,+2,,(v,). (1)

Here p labels a canonical, HF MO, €, is the corresponding
energy, w, is the electron binding energy (ionization energy
or electron affinity), and Epp is a diagonal element of the
energy-dependent, self-energy matrix. Up to first order in the
fluctuation potential, the self-energy vanishes and the results
of Koopmans’s theorem are recovered for the ionization en-
ergy. For second order, the diagonal elements of the self-
energy matrix are
)= 3 [(pillab)? 5 Kpallinl? ’
ia<b Wpt €~ €~ €, 4ic; Wp+ €~ €€

)

where i and j label only occupied MOs and a and b are used
only for virtual orbitals. The brackets represent antisymme-
trized ERIs in the MO representation. The threefold summa-
tions of Eq. (2) imply that arithmetic operations for the
evaluation of second-order, self-energy matrix elements scale
somewhat lower than N3. Therefore, second-order calcula-
tions are highly efficient compared to self-consistent-field
(SCF) iterations.

However, the evaluation of ERIs in the MO representa-
tion scales as N°. MOs, @, are built from linear combinations
of atomic orbitals, wu, such that

(1) = 2 Cpps(r), 3)
o

and, therefore, evaluation of MO ERIs requires four transfor-
mation steps of the following type:

(prllon) = 2 Cplpr]lo), (4)
o

in which a Latin MO index supplants a Greek AO index.
This step constitutes the bottleneck of many propagator cal-
culations. If only one electron binding energy is needed,
second-order calculations can be executed more efficiently
by restricting the range of index p in Eq. (4) to a single
value. The first step of the transformation generates interme-
diates with three running indices instead of four and there-
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fore has N* arithmetic scaling. Each of the three subsequent
steps has the same scaling factor.

For higher-order approximations such as partial third
order’' (P3) and the outer valence Green’s function,”” the pp
self-energy matrix elements include terms with fivefold sum-
mations such as

1 (pallij)ijl|be)bel|pa)

4 obei (0, +€,—€—€)(e+€—€— €)

(5)

ERIs with no common p index are needed and a more gen-
eral integral transformation must be executed. Even for the
calculation of a single ionization energy, the transformation
of the required integrals scales as N°.

In conventional algorithms, MO ERIs are stored on disk
and are recalled as needed in the evaluation of self-energy
matrix elements. The resulting storage demands scale as N*.
In competing semidirect schemes, intermediates defined in
terms of MO ERIs with four or three virtual orbital indices
are generated through calculation of AO ERIs. For example,
the intermediate X requires a subset of the MO ERIs with
three virtual indices, where

_: Silbexeelpa)

P e (e+ € —€,— €.)

(6)
Such procedures may require repeated evaluations of AO
ERIs.

B. Treatments of interelectronic repulsion

To reduce disk storage requirements and to avoid re-
evaluation of AO ERIs, we consider alternatives based on
DF or RI strategies. Antisymmetrized ERIs may be denoted
as follows:

RV = (pql|st) = (pqlst) - (pqlts). (7)
with
(pqlst) = f f QD;(r)(pZT:’_)t‘i('r)got(r’)drdr’. 8)

Here, p, g, s, and ¢ are labels of molecular spin-orbitals and
{R”%} is a set of matrices that each contain a subset of ERIs
with (pq| in the bra space. The superscripts indicate only to
which subset the matrix belongs. Spin is already integrated.
Mulliken notation®* also will be employed to establish rela-
tionships with DF-RI arguments, where

(ps|qt) = (pqlst). (9)

Mulliken notation has the advantage of separating the coor-
dinates of the electrons. Such integrals are the ps matrix
elements of the electrostatic potential generated by a single
orbital product, gt. In DF-RI techniques,ls’19 orbital products
are expressed as linear combinations of auxiliary functions,

{g.(r)}, where
@, ()@ (r) = 2 e'g,(r). (10)
k

Once again, superscripts identify a pair of MOs that gener-
ates the potential that is being expanded in terms of auxiliary
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functions. The latter functions will henceforth be assumed to
be real. Left multiplication by a given function of the auxil-
iary set multiplied by the Coulomb operator,19 g/(r’
and integration over the full space of r and r’ yields

(l|qt)=§eZtle’ (11)
with

(llat) = ff z(r)wﬂ(r )%( )d " (12)

le_JJ gl(r)gk(r drdr’ . (13)
Expansion coefficients may be computed according to

ef = 2 Gy (Ulan). (14)

Therefore, four-index integrals are given by

(prlgt) = 2 (prik) Gy (llgr). (15)
ki

Because the matrix G™! is needed only at this level of the

calculation, its absorption into three-index quantities can be
. 133

exploited,” such that

E Gy (lq1). (16)

Here, only a single superscript labels the subset of three-
center ERIs to which a given matrix T belongs. The dimen-
sions of the matrix T? are M X N, where M is the number of
auxiliary functions. M is, in general, a small multiple of N.
Representative M : N ratios for the GEN-A2" 3437 auxiliary
basis set are: 4:1 for cc-pVDZ, 3:1 for cc-pVTZ, and 2:1 for
cc-pVQZ. This prefactor does not grow with the size of the
system and, therefore, is not part of the formal scaling. Thus,
four-index integrals may be obtained from simple matrix
multiplications of three-index intermediates,

R’ = (TP)TTq _ (Tq)TTP_ (17)

Considerable economies of storage can be realized by saving
T matrices on disk instead of the R matrices that occur in
previous electron propagator algorithms. DF-RI techniques
enable execution of conventional (as opposed to semidirect)
algorithms in which all intermediates are stored on disk and
AO ERIs need not be reevaluated. Moreover, the transforma-
tion from AO to MO bases can be executed for three-index
matrices, T, with a formal scaling of M X N3, thus gaining
one order in the arithmetic scaling of this task according to

7,=> C,T,,. Yp. (18)
o

In DF-RI-EPT calculations beyond second order, the most
intensive arithmetic task is calculation of self-energy matrix
elements and not the transformation of integrals. Therefore,
DF-RI-EPT calculations will not only reduce storage require-
ments, but can also compete in speed with previous algo-
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rithms despite the need for extra integral evaluation and han-
dling.

Note that the method described here does not use DF-RI
for the SCF solution of the reference system. Such an ap-
proach would result in an approximate description of the
self-energy’s pole structure, for MO energies would be
affected.”® Preliminary calculations indicate that DF-RI ap-
proximations for the Coulomb contribution to the Fock ma-
trix introduce deviations in orbital energies that are less than
0.01 eV. Nevertheless, simultaneous application of DF-RI
approximations to SCF and EPT methods has not been at-
tempted here, for procurement of HF wavefunctions does not
constitute a bottleneck in EPT calculations.

lll. COMPUTATIONAL DETAILS

All calculations were performed using the deMon2k
program.29 The two- and three-center integrals of Egs. (12)
and (13) are evaluated efficiently through employment of
Hermite auxiliary functions.”*" Extra functionality was
added to this program so that the modified version is able to
evaluate four-center integrals and, therefore, to perform HF
calculations. It can also execute EPT calculations of second
order (EP2) and P3 in the quasiparticle approximation. An
interface routine builds four-index ERIs in the MO base by
using deMon2k routines for evaluation of two- and three-
center ERIs. Auxiliary function sets are generated automati-
cally for each choice of basis set.** " Two basis sets com-
monly employed in EPT calculations were used: cc-pVTZ41
for small molecules and 6-311G(d,p) *** for porphyrin.

IV. RESULTS AND DISCUSSION
A. Size dependence of errors

The present DR-RI techniques are intended for the study
of large molecules where ordinary EPT calculations are in-
feasible. Here, the behavior of errors introduced by these
techniques as a function of molecular size is examined. A
plot of such errors versus the number of carbons in alkane
chains is shown in Fig. 1. For these calculations, the cc-
pVDZ and auxiliary GEN-A2" basis sets were used. After an
initial maximum for ethane, the error declines through hep-
tane and increases only slightly for octane. There is no evi-
dence that errors grow in proportion to chain length. Unlike
the results of Ref. 44, where DF-RI was applied in a different

0.03 Second order

=3
5]

e
=)

1,(DF-RD)- T, (eV)

110 135 160 185 210

Number of hasis functions

FIG. 1. Variation of error in ionization energies with respect to n-alkane
chain length.
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TABLE I. Accuracy of RI-EP2 for small molecules.

J. Chem. Phys. 131, 124110 (2009)

RI-EP2
Molecule Orbital GEN-A2 GEN-A2* EP2* Expt.”
B,Hg 13, 12.066 12.208 12.21 11.9
CH, 11, 14.026 14.060 14.07 14.40
C,H, 1bs, 10.455 10328 10.33 1051
1bs, 12.656 12.747 12.75 12.85
3a, 14.477 14.482 14.48 14.66
1by, 15.847 15.882 15.89 15.87
2by, 19.270 19.334 19.34 19.23
HCN 1m 13.778 13.678 13.68 13.61
HNC 1 13.856 13.746 13.74 12.55
NH; 3a, 10.244 10.167 10.17 10.8
N, 1m, 17.149 17.049 17.05 16.98
3o, 15.034 15.022 15.02 15.60
20, 18.192 18.197 18.20 18.78
CO 5o 14.045 14.056 14.06 14.01
1 16.485 16.371 16.37 16.91
H,CO 2b, 9.936 9.938 9.94 10.9
H,0 1b, 11.615 11.500 11.50 12.78
3a, 13.945 13.862 13.86 14.74
1b, 18.137 18.085 18.08 18.51
HF 1 14.841 14.708 14.70 16.19
30 19.043 18.945 18.94 20.00
F, 1, 14.301 14.205 14.20 15.83
3o, 20.643 20.470 20.46 21.1
L, 17.451 17.358 17.35 18.8
MAD vs Expt. 0.574 0.613 0.615 0.000
MAD vs EP2 0.081 0.042 0.000
“See Ref. 12.

context, the approach presented here is stable with respect to
the size of the system, provided that auxiliary basis sets of
good quality are used.

B. Accuracy for small molecules

DF-RI methods also may be judged by their accuracy for
valence ionization energies of small molecules. Tables I and
II compare conventional results'? with their DF-RI counter-
parts in the second order (EP2) and P3 quasiparticle approxi-
mations. The same cc-pVTZ basis sets and molecular struc-
tures were employed in both sets of calculations. Mean
absolute deviations (MADs) of the DF-RI results with re-
spect to the conventional data are below 0.1 eV for GEN-A2
and below 0.05 eV for GEN-A2" auxiliary basis sets. MADs
with respect to experimental values are no worse for the use
of the DF-RI methods.

C. Improved virtual orbitals

In a recent publication, we described a novel method for
the reduction of the virtual orbital space in quasiparticle elec-
tron propagator calculations.'>'® Substantial computational
efficiencies achieved through the construction of quasiparti-
cle virtual orbitals (QVOs) generally produced only small

deviations from electron binding energies obtained with the
full set of unoccupied orbitals. Here we consider DF-RI cal-
culations performed with QVOs. It is necessary to evaluate
elements of the density-difference matrix described in Ref.
15,

(palljk){jk||pb)
A ab=6ap5bp_2 || ||
ik (E,+€,— €~ €)E,+€—€~€)
(pjllac)(bc||pj)
> (19)

i (E,+€—€,—€)E,+€—€,—€) ’

with conventional techniques based on four-center ERIs. Pre-
liminary tests performed with DF-RI methods for the con-
struction of the density difference matrix indicate that extra
errors appear in corresponding P3 calculations with an active
virtual space that is 50% as large as the original. Therefore, if
the QVOs procedure is employed, DF-RI methods should be
activated only after the reduction of the virtual orbital space
is realized. Fortunately, exact, four-center ERIs required for
the determination of the density difference matrix can be
computed with N* arithmetic scaling. Storage requirements
for intermediate matrices scale as N°. These scaling factors
are the same as those of the DF-RI procedure. Results from
Ref. 15 with 100% (i.e., no QVO reduction) or 50% reten-
tions of virtual orbitals are compared with analogous DF-RI
calculations in Table III. For the 100% case, the MAD of P3
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TABLE II. Accuracy of RI-P3 for small molecules.

J. Chem. Phys. 131, 124110 (2009)

RI-P3
Molecule Orbital GEN-A2 GEN-A2* P3* Expt.”
B,Hg 1bs, 11.984 12.137 12.14 11.9
CH, 11, 14.177 14219 1422 14.40
C,H, 1bs, 10.676 10.554 10.55 1051
1bs, 12.877 12.968 12.98 12.85
3a, 14.878 14.883 14.89 14.66
1b,, 16.067 16.102 16.11 15.87
2by, 19.362 19.433 19.44 19.23
HCN 1 14.061 13.957 13.96 13.61
HNC 1 14.220 14.112 14.11 12.55
NH; 3a, 10.802 10.729 10.73 10.8
N, 1, 17.286 17.186 17.18 16.98
3o, 15.938 15.929 15.93 15.60
20, 19.286 19.302 19.30 18.78
CO 5o 14.255 14.270 14.27 14.01
1 17.155 17.044 17.04 16.91
H,CO 2b, 10.901 10.899 10.90 10.9
H,0 10, 12.613 12.494 12.49 12.78
3a, 14.859 14.773 14.77 14.74
1b, 18.794 18.740 18.74 18.51
HF 1 16.085 15.944 15.94 16.19
30 19.944 19.841 19.84 20.00
F, 1, 15.734 15.625 15.62 15.83
3o, 21.223 21.047 21.04 21.1
1, 18.999 18.892 18.89 18.8
MAD vs Expt. 0.248 0.249 0.250 0.000
MAD vs P3 0.084 0.037 0.000
“See Ref. 12.

results produced by the DF-RI method is 0.003 eV. When the
dimension of the virtual orbital space is reduced by 50%, this
deviation is 0.008 eV. The mean effect of employing both
approximations (50% QVOs and DF-RI) is 0.086 eV for P3
calculations. Therefore, DF-RI methods can be combined
with QVOs for the treatment of even larger molecules.

D. Porphyrin

Recent electron propagator studies of porphyrins and
their derivatives**® provide a suitable standard of compari-
son for DF-RI techniques. P3/6-311G™* calculations gener-
ated a consistent and accurate assignment of the lowest ion-

TABLE III. Effects of RI methods on P3/cc-pVTZ ionization energies (V) obtained with QVOs (50%) and full

virtual orbital (100%) spaces.

50% 100%
Molecule Orbital p3* RI-P3 p3* RI-P3
Benzene an 9.362 9.363 9.402 9.403
€ 12.166 12.167 12.302 12.298
as, 12.321 12.348 12.384 12.385
e, 14.362 14.359 14.466 14.462
by, 15.000 15.004 15.066 15.067
by, 15.636 15.628 15.757 15.750
g, 17.197 17.187 17.314 17.310
Borazine e’ 10.290 10.295 10.318 10.320
e 11.682 11.676 11.825 11.820
ay 12.847 12.850 12.906 12.907
aj 13.926 13.908 14.037 14.030
e 15.079 15.065 15.152 15.150
aj) 14.872 14.869 14.929 14.930
e’ 17.848 17.835 17.905 17.904
RI-MAD 0.008 0.003

“Reference 15.
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TABLE IV. Ionization energies (eV) of free porphyrin in RI calculations
with GEN-A2 auxiliary functions.

Orbital KT p3* RI-P3 Expt.a
a, 6.14 7.02 7.078 7.1
by, 6.66 6.96 7.031 6.9
bs, 9.13 8.30 8.368 8.4
by, 9.30 8.48 8.550 8.4
“See Ref. 45.

ization energies of porphyrin. The results of Table IV
indicate the DF-RI technique, executed with the GEN-A2
auxiliary basis set, introduces deviations from ordinary P3
calculations that are less than 0.07 eV. The DF-RI results are
all slightly larger those of Ref. 45 by 0.05-0.07 eV and pro-
vide a consistent account of the cationic final states.

V. CONCLUSIONS

DF or RI techniques have been proposed as a means to
performing ab initio electron propagator calculations on
large systems. Test calculations on small molecules, alkanes,
benzene, borazine, and porphyrin show that employment of
standard auxiliary functions may enable calculations of
triple-{ plus polarization quality to be executed without un-
acceptable loss of accuracy. Significant reductions in external
disk storage and decreased arithmetic operations for the
bottleneck of ordinary calculations, the four-index integral
transformation, have been achieved. These techniques may
be combined with methods for reducing the rank of the vir-
tual orbital space, provided that conventional ERI techniques
are employed in the evaluation of density-difference matri-
ces. Applications to larger molecules on modestly con-
structed computational platforms lie in prospect.
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