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Second-order, two-electron Dyson propagator theory: Comparisons
for vertical double ionization potentials
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The second-order, two-electron Dyson propagator is derived using superoperator theory with a
spin-adapted formulation. To include certain ladder diagrams to all orders, the shifted-denominator
�SD2� approximation is made. Formal and computational comparisons with other approximations
illustrate the advantages of the SD2 procedure. Vertical double ionization potentials �DIPs� for a set
of closed-shell molecules are evaluated with the second-order propagator and the SD2 method. The
results of the SD2 approximation are in good agreement with experiment. To systematically
examine the quality of the results, we compared SD2 and equation-of-motion, coupled-cluster
predictions. The average absolute discrepancy is 0.26 eV for 36 doubly ionized states. © 2008
American Institute of Physics. �DOI: 10.1063/1.2973533�

I. INTRODUCTION

Double ionization energies have been studied exten-
sively using a variety of experimental techniques. Auger
electron spectroscopy has been the most widely used method
to investigate the doubly ionized states of molecules.1–6 Dur-
ing the last few decades, other techniques with higher reso-
lution such as double charge transfer �DCT�,7–14 threshold
photoelectron coincidence �TPEsCO�,15 photoelectron-
photoelectron coincidence16 �PEPECO�, and so on also have
been developed.

In theoretical investigation of double ionization pro-
cesses, the electronic energy-difference method based on
configuration interaction ��CI� has been one of the most
accurate methods. Many vertical double ionization potentials
�DIPs� and properties for dicationic states have been evalu-
ated with this technique.12,17,18 However �CI calculations of-
ten cannot be carried out for systems of chemical interest
because a very large matrix eigenvalue problem must be
solved, even for small molecules.

On the other hand, electron propagator theory underlies
many methods for calculating single-electron binding and
excitation energies.19–26 Improved accuracy and computa-
tional efficiency have been realized through use of recently
derived approximations for vertical, single-electron detach-
ment energies.27–29 Electron propagator methods provide en-
ergy differences directly, without evaluation of total energies
of initial and final states. Therefore, a number of approxima-
tions to the exact two-electron �two-particle or particle-
particle� propagator, which obey the Bethe–Salpeter �BS�
equation,30 have been developed and used to study double
ionization processes.

We have already reported a two-electron propagator
method corrected by first-order perturbation theory with a
closed-shell, single-determinantal reference state to study

Auger spectra.31 This efficient method for the calculation of
DIPs has been improved by employment of complete active
space self-consistent field �SCF� reference states,32 by the
introduction of Dyson orbitals from the one-electron propa-
gator in the reference state33 and by the GW
approximation.34–36

The algebraic diagrammatic construction �ADC� ap-
proach has been the foundation of the most widely used the-
oretical methods for the study of double ionization processes
in molecules.37–45 The ADC�2� methods are based on an
analysis of the Feynman diagrams which describe the
second-order perturbation expansion of the propagator with
respect to Hartree–Fock �HF� reference states. In the
particle-particle ADC�2� method, the �N−2� electron and
�N+2�-electron parts in the spectral form of Green’s function
are treated separately, i.e., the ADC�2� propagator is not a
Dyson propagator, but one of the propagators in the BS equa-
tion. This method is a so-called non-Dyson ADC approxima-
tion and has been described in detail.46 The formulations of
the propagator corrected by a second- or higher-order pertur-
bation expansion are different from the standard Dyson
propagator. A comparison of the Dyson and non-Dyson ap-
proaches is given in Sec. III.

In this paper, the second-order, two-electron Dyson
propagator is derived with superoperator theory, and relation-
ships with the ADC�2� method are described. �Superoperator
theory is closely related to equation-of-motion techniques.�
To include contributions from certain ladder diagrams in all
orders from intermediate configurations, the shifted-
denominator �SD2� approximation is applied to the second-
order propagator. Formal and computational comparisons
with other approximations illustrate the advantages of the
SD2 procedure. Finally, numerical results on DIPs of typical,
closed-shell molecules produced by the SD2 method will be
compared to �CISD, �CCSD�T�, equation-of-motion
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coupled-cluster singles and doubles �EOM-CCSD�, and
ADC�2� data and the advantages of the new procedure will
be discussed.

II. THEORY

A. Superoperator theory

The physical content of the two-electron propagator re-
sides chiefly in its poles and residues. In its spectral form, the
pq ,rs element of the two-electron propagator matrix is

Gpq,rs�E� = lim
�→0

��
m

�N�aq
†qp

†�N − 2,m	�N − 2,m�aras�N	
E + En�N − 2� − E0�N� − i�

− �
n

�N�aras�N + 2,n	�N + 2,n�aq
†ap

†�N	
E + E0�N� − Em�N + 2� + i� 
 . �1�

The limit with respect to � is taken because of integration
techniques required in a Fourier transform from the time-
dependent representation. Matrix elements of the corre-
sponding field operator products, aq

†ap
† and aras, depend on

the N-electron reference state �N	 and final states with N�2
electrons labeled by the indices m and n. The propagator
matrix is energy dependent; poles occur when E equals a
DIP or a double electron affinity �DEA�. Corresponding resi-
dues are related to the Feynman–Dyson amplitudes.

The superoperator metric19,25 is defined by

����� = �N���†,���N	 , �2�

where � and � are field operator products that change the

number of electrons by 2. The identity superoperator Î obeys

Î� = � . �3�

The Hamiltonian superoperator Ĥ is defined by

Ĥ� = ��,H� , �4�

where the Hamiltonian reads

H = �
pq

hpqap
†aq + 1

4 �
pqrs

�pq � rs	ap
†aq

†asar, �5�

and where �pq � rs	 is an antisymmetrized Coulomb repulsion
integral such that

�pq � rs	 = Vpq,rs − Vpq,sr, �6�

with

Vpq,rs =
/

�
p
*�r��q

*�r���r�r��s�r��

�r − r��
drdr�. �7�

It is possible to express the pq, rs element of the two-
electron propagator matrix as

Gpq,rs�E� = �apaq��EÎ − Ĥ�−1aras� . �8�

In matrix notation, Eq. �8� is rewritten as

G�E� = �aa��EÎ − Ĥ�−1aa� . �9�

To avoid treatment of the inverse operator, an inner pro-
jection is effected, where

G�E� = �aa�h��h��EÎ − Ĥ�h�−1�h�aa� , �10�

and where h is the vector of all � field operator products, i.e.,

h = �aa,a†aaa,a†a†aaaa, . . . 
 . �11�

Superoperator matrix elements are evaluated with respect to
the exact ground state. After partitioning h into a primary
space of simple field operator products aa and a secondary
space of field operator products that is orthogonal to the
primary space f, the propagator matrix may be expressed by

G�E� = �1 0��E1 − �aa�Ĥaa� �aa�Ĥf�

�f�Haa� E1 − �f�Ĥf�

−1�1

0

 .

�12�

From the above expression, one may extract

G−1�E� = E1 − �aa�Ĥaa� − �aa�Ĥf��E1

− �f�Ĥf�
−1�f�Ĥaa� �13�

which may also be written as the inverse form of the Dyson
equation,

G−1�E� = G0
−1�E� − ��E� , �14�

where the zeroth order propagator reads

G0
−1�E� = E1 − �aa�Ĥ0aa�HF, �15�

and the self-energy is given by

��E� = �aa�V̂aa�HF + �aa�Ĥaa�corr

+ �aa�Ĥf��E1 − �f�Ĥf�
−1�f�Ĥaa� . �16�

The HF subscript in the zeroth-order propagator restricts op-
erator averages in the ground state to the HF contributions;
the corr subscript in the self-energy part refers to the corre-
lation �non-HF� contribution only. The usual Møller–Plesset

partitioning of the Hamiltonian defines Ĥ0 and V̂. The di-
mension of the propagator matrices and of the self-energy
matrix, ��E�, is equal to the rank of the primary space. A
diagonalization only of the relatively small primary space is
needed. Pole searches based on the Dyson equation usually
converge rapidly with respect to E.

B. Approximate superoperator Hamiltonian matrices

Several propagators can be defined in terms of superop-
erator Hamiltonian matrix elements. Poles corresponding to
the second-order self-energy equal eigenvalues of the matrix

Ĥ = ��aa�Ĥaa��2� �aa�Ĥf4��1�

�f4�Ĥaa��1� �f4�Hf4��0� 
 , �17�

where f4 is a vector of three-hole, one-particle �3hp�, and
three-particle, one-hole �3hp� field operators and where the
superscripts in parentheses stand for the orders through
which the elements are evaluated. For example, the primary
operator block evaluated through second order has constitu-
ents in each order according to
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�aa�Ĥaa��2� = �aa�Ĥaa�0 + �aa�Ĥaa�1 + �aa�Ĥaa�2, �18�

where �aa �Ĥaa�0, the zeroth-order part, corresponds to

�aa �Ĥ0aa�HF in Eq. �15�, the first-order part corresponds to

�aa � V̂aa�HF in Eq. �16� and the second-order part is a con-

stituent of �aa �Ĥaa�corr.
Table I displays formulas for each block of zeroth- and

first-order Ĥ in the canonical HF orbital basis. 2h and 2p
subscripts of the primary block refer to two-hole and two-
particle field operators, and the indices i , j ,k , . . . and
a ,b ,c , . . . stand for occupied and virtual spin orbitals, respec-
tively. First-order 2h-3ph and 2p-3hp matrix elements van-
ish. These results indicate that intermediate 3ph and 3hp
operators do not affect calculations on two-hole and two-
particle final states, respectively, up to third order. If only 2h
�2p� operators are included in the primary space, 3ph �3hp�
operators can be neglected in calculations on DIPs �DEAs�
because of the first-order 2h-3ph �2p-3hp� decoupling.
Therefore, it is possible to truncate the superoperator Hamil-
tonian matrix for the second-order Dyson propagator with

respect to the DIP �Ĥ−� and the DEA �Ĥ+� parts by reparti-
tioning, such that

Ĥ− = � Ĥ2h,2h
�2� Ĥ2h,2p

�1� Ĥ2h,3hp
�1�

H2p,2h
�1� H2p,2p

�0� 0

H3hp,2h
�1� 0 Ĥ3hp,3hp

�0� � , �19�

Ĥ+ = � Ĥ2p,2p
�2� Ĥ2p,2h

�1� Ĥ2p,3ph
�1�

H2h,2p
�1� H2h,2h

�0� 0

H3ph,2p
�1� 0 Ĥ3ph,3ph

�0� � . �20�

These two expressions are produced by neglecting 2p-3ph or
2h-3hp couplings in the former and latter cases, respectively.

This simplification has the advantage of reducing the dimen-
sion of the matrices to the size that is characteristic of the
ADC�2� method. We will henceforth treat only the DIP part
of the approximate, superoperator Hamiltonian matrix. An
inversion of occupied and virtual indices leads to the corre-
sponding treatment of DEAs.

C. Expression of second-order self-energy

All zeroth- and first-order superoperator matrix elements
have been evaluated with the HF reference state. To derive
the second-order, two-electron propagator, the second-order

Ĥ2h,2h block is needed. The second-order ij ,kl element is

�aiaj�Ĥakal�2 = ���1���aj
†ai

†,�akal,V�����0�	

+ ���0���aj
†aj

†,�akal,V�����1�	 �21�

= 1
2 �1 − Pij��1 − Pkl�� jl �

m,ab

�km � ab	tim,ab,

�22�

where

���1�	 = �
ij,ab

tij,abaiajaa
†ab

†���0�	 �23�

and

tij,ab =
�ab � ij	

	i + 	 j − 	a − 	b
. �24�

��0� is the HF determinantal wavefunction. From Eq. �22�
one may suspect that the second-order expression is non-
Hermitian. Because the 2h operator space is not orthonormal
in all orders of the fluctuation potential, it is necessary to
replace aiaj by its symmetrically orthogonalized47 counter-
part f ij, where

f ij = aiaj − 1
2�

kl

�akal�aiaj�akal

− 1
2 �

klma

�aa
†akalam�aiaj�aa

†akalam + ¯ . �25�

Higher terms depend on second-order and higher-order terms
in the superoperator overlap matrix. By using the symmetric
orthogonalization, the complete second-order ij ,kl element
is given by

�f ij�Ĥfkl�2 = �aiaj�Ĥ0akal�2 + �aiaj�V̂akal�1

− 1
2�

mn

�aiaj�aman�2
*�aman�Ĥ0akal�0

− 1
2�

mn

�aiaj�Ĥ0aman�0�aman�akal�2, �26�

where the overlap matrix elements between the 2h and 3hp
spaces vanish and terms of third and higher orders are omit-
ted. In the canonical orbital basis, the simplifying relation

Ĥ0aiaj = �	i + 	 j�aiaj �27�

implies that

TABLE I. Elements of zeroth- and first-order Ĥ blocks for the two-electron
propagator.

Block Element Formula

�aa �Ĥaa�
Ĥ2h−2h

�1� Ĥij,kl
�ik� jl�	i+	 j�− �ij��kl	

Ĥ2h−2p
�1� Ĥij,ab

�ij��ab	

Ĥ2p−2h
�1� Ĥab,ij

�ab��ij	

Ĥ2p−2p
�1� Ĥab,cd

�ac�bd�	a+	b�− �ab��cd	

�aa �Ĥf4�
Ĥ2h−3hp

�1� Ĥij,klma
�1− Pij��1− Pkl− Plm�� jl�ia��km	

Ĥ2h−3ph
�1� Ĥij,kabc

0

Ĥ2p−3hp
�1� Ĥab,ijkc

0

Ĥ2p−3ph
�1� Ĥab,icde

�1− Pab��1− Pcd− Pde��bd�ai��ce	

�f4 �Ĥf4�
Ĥ3hp−3hp

�1� Ĥijka,lmnb
�il� jm�kn�ab�	i+	 j +	k−	a�

+�1− Pij − Pjk��1− Plm− Pmn�

��il�kn�jb��ma	−�ab� jm�jk��ln	


Ĥ3hp−3ph
�1� Ĥijka,lbcd

0

Ĥ3ph−3ph
�1� Ĥiabc,jdef

�ij�ad�be�cf�	a+	b+	c−	i�
+�1− Pab− Pbc��1− Pde− Pef�


��ad�cf�bj��ei	−�ij�be�ac��df	
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�f ij�Ĥfkl�2 = �aiaj�V̂akal�1 − 1
2 �	i + 	 j − 	k − 	l��aiaj�akal�2.

�28�

�aiaj � V̂akal�1 has been evaluated in Eq. �22�, and the remain-
ing term is given by

�aiaj�akal�2 = ���1���aj
†ai

†,akal����1�	

+ ���0���aj
†ai

†,akal����2�	

+ ���2���aj
†ai

†,akal����0�	

= − 1
2 �1 − Pij��1 − Pkl�� jl �

m,ab

tim,abt
km,ab
* . �29�

Substitution of the terms in Eqs. �22� and �29� into Eq. �28�
yields

�f ij�Ĥfkl�2 = 1
4 �1 − Pij��1 − Pkl�


 �
m,ab

� jl��km � ab	tim,ab + �ab � im	t
km,ab
* � .

�30�

Inserting the expression for the individual matrix ele-
ments of Eq. �30� and those shown in Table I into Eq. �16�
gives the following expression for the second-order, self-
energy matrix element of the two-electron Dyson propagator

���2��E��ij,kl = − �ij � kl	 +
1

4
�1 − Pij��1 − Pkl� �

m,ab

� jl��km � ab	tim,ab + �ab � im	t
km,ab
* �

+
1

2�
ab
� �ij � ab	�ab � kl	

E − 	a − 	b

 + �1 − Pij��1 − Pkl�

1

2
� jl


 �
mn,a

�ia � mn	�mn � ka	
E − �	 j + 	m + 	n − 	a�

− �1 − Pij��1 − Pkl��
m,a

�ia � lm	�jm � ka	
E − �	 j + 	l + 	m − 	a�

. �31�

The expression for the self-energy matrix elements in
Eq. �31� resembles that of the ADC�2� method,37,38,48 except
for the third term,

1

2�
ab
� �ij � ab	�ab � kl	

E − 	a − 	b

 , �32�

which corresponds to a contribution from the 2p space. In
the ADC�2� method, the 2p operators are decoupled; analo-
gous ladder-diagram terms were included in the energy-
independent self-energy part as

1
4�

ab

��kl � ab	tij,ab + �ab � ij	t
kl,ab
* � . �33�

In another two-particle propagator study, Liegener reported33

that neglect of the contribution of the energy-dependent term
of Eq. �32� is a good approximation. However, this approxi-
mation gives rise to an average deviation of �1–2 eV in the
calculation of DIPs and will be discussed later.

D. Shifted-denominator approximation

The particle-particle ADC�2� method has been extended
to include first-order terms in the 3hp-3hp block.37,48 This
additional correction produces an approximate superoperator
Hamiltonian matrix,

Ĥ− = � Ĥ2h,2h
�2� Ĥ2h,2p

�1� Ĥ2h,3hp
�1�

Ĥ2p,2h
�1� Ĥ2p,2p

�0� 0

Ĥ3hp,2h
�1� 0 Ĥ3hp,3hp

�1� � . �34�

This superoperator Hamiltonian matrix resembles that of the
Tamm–Dancoff approximation20 and incorporates some
third- or higher-order self-energy terms in the propagator.
Eigenvalues of the Hamiltonian matrix in the ADC�2�
method have been applied to making quantitative assign-
ments of Auger spectra.40–45

In pole searches with the Dyson propagator, the second-
order self-energy with the first-order, 3hp correction may be
rewritten as

��E� = �aa�Ĥf3hp��1��E1 − �f3hp�Ĥf3hp��1�
−1�f3hp�Ĥaa��1�.

�35�

We expand, as usual, the inverse matrix to second- and third-
order terms to avoid a full matrix inversion so that

��E� = �aa�Ĥf3hp��1��E1 − �f3hp�Ĥf3hp�0
−1�f3hp�Ĥaa��1�

+ �aa�Ĥf3hp��1��E1 − �f3hp�Ĥf3hp�0
−1


�f3hp�Ĥf3hp�1�E1 − �f3hp�Ĥf3hp�0
−1


�f3hp�Ĥaa��1�, �36�

where �f3hp �Ĥf3hp�0 has only diagonal elements expressed in
terms of orbital energies.
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On the other hand, an expansion of the first-order,
3hp-3hp block about the diagonal and off-diagonal parts ac-
cording to

�f3hp�Ĥf3hp��1� = ��f3hp�Ĥf3hp��1�
�,� + ��f3hp�Ĥf3hp��1�
�,��,

�37�

where � and � refer to 3hp indices and ���, shows that
certain third- and higher-order terms are retained by the ap-
proximation

��E� = �
�

�aa�Ĥf3hp��
�1��E1 − �f3hp�Ĥf3hp��,�

�1� 
−1


�f3hp�Ĥaa��
�1� + �

���

�aa�Ĥf3hp��
�1�


�E1 − �f3hp�Ĥf3hp��,�
�1� 
−1�f3hp�Ĥf3hp��,�

�1�


�E1 − �f3hp�Ĥf3hp��,�
�1� 
−1�f3hp�Ĥaa��

�1�. �38�

Neglect of the off-diagonal term of Eq. �37� produces the
following, simplified, self-energy matrix,

��E� = �
�

�aa�Ĥf3hp��
�1�


�E1 − �f3hp�Ĥf3hp��,�
�1� 
−1�f3hp�Ĥaa��

�1�

= �
�

�aa�Ĥf3hp��
�1��E1 − �f3hp�Ĥf3hp�0

− ��f3hp�Ĥf3hp�1
�,�
−1�f3hp�Ĥaa��
�1�. �39�

One can see that this self-energy is identical to the second-
order self-energy term in Eq. �16� except for the shifted de-

nominator arising from the term ��f3hp �Ĥf3hp�1
�,�. The first-
order, diagonal element from the 3hp configuration gives
certain ladder diagrams up to infinite order. One also avoids
performing a double loop over the 3hp indices in the calcu-
lation of primary matrix elements. Therefore, DIPs can be
obtained with the same effort of the second-order propagator
method with a single evaluation of the diagonal elements of
the first-order 3hp-3hp matrix. Because many terms beyond
second order are included in this approximation, it is denoted
by the abbreviation SD2. Comparison of the calculated DIPs
using the self-energy of Eq. �36� and of the SD2 method is
presented in the following section. Explicit expressions for
the self-energy are discussed in the Appendix.

E. Spin-adapted basis

So far, the matrix element formulas of the second-order,
two-electron Dyson propagator have referred to a nondegen-
erate ground state assumed to have a closed-shell HF repre-
sentation. Final states may be singlets or triplets. Therefore,
one may factorize the propagator into singlet and triplet parts
by introducing spin-adapted operators. In general,
�N�2�-electron configurations corresponding to a field op-
erator product acting on a closed-shell, determinantal refer-
ence state are not eigenfunctions of the spin-operator S2. For
example, the operation of S2 on a 3hp configuration which is
an eigenfunction of Sz yields

S2aa
†aiajāk���0�	 � S2�aa

†aiajāk	 �40�

=2�aa
†aiajāk	 + �aa

†aiājak	 + �aa
†āiajak	

− �āa
†āiajāk	 − �āa

†aiājāk	 , �41�

where subscript indices label spatial orbitals and a bar over a
field operator distinguishes spin 
 from spin �. Equation
�41� indicates that a basis of 3hp operators has singlet, trip-
let, and quintet components. Therefore, we employ the fol-
lowing spin-adapted 2h �2p� operator basis:

�aa
pq = �2�1 + �pq�
−1/2��apāq � āpaq�� , �42�

where indices �p ,q� stand for general spatial orbitals. The
upper sign refers to singlets �p�q�, and the lower sign refers
to triplets �p�q�.

The three singlet and four triplet, spin-adapted 3hp op-
erators are shown in Table II. The lone quintet operator is
neglected in this paper. Use of these operators factorizes the
propagator for the singlet and triplet parts. Here, only the
superoperator Hamiltonian for the singlet state is presented,

Ĥsinglet
− = �

Ĥ2h,2h
�2� Ĥ2h,2p

�1� Ĥ2h,3hp
�1��I� Ĥ2h,3hp

�1��II� Ĥ2h,3hp
�1��III�

Ĥ2p,2h
�1� Ĥ2p,2p

�0� 0 0 0

Ĥ3hp,2h
�1��I� 0 Ĥ3hp,3hp

�1��I−I� Ĥ3hp,3hp
�1��I−II� Ĥ3hp,3hp

�1��I−III�

Ĥ3hp,2h
�1��II� 0 Ĥ3hp,3hp

�1��II−I� Ĥ3hp,3hp
�1��II−II� Ĥ3hp,3hp

�1��II−III�

Ĥ3hp,2h
�1��III� 0 Ĥ3hp,3hp

�1��III−I� Ĥ3hp,3hp
�1��III−II� Ĥ3hp,3hp

�1��III−III�
� . �43�

TABLE II. Singlet- and triplet-adapted 3hp operators.

Basis Element Formula

Singlet

f3hp
�I� fi�ja 2−1/2�aa

†aiajāj + āa
†āiajāj�

f3hp
�II� fi�j�ka 2−1�aa

†āiajak−aa
†aiajāk− āa

†aiājāk+ āa
†āiājak�

f3hp
�III� fi�j�ka 12−1/2�−aa

†āiajak+2aa
†aiājak−aa

†aiajāk�
�+ āa

†aiājāk−2āa
†āiajāk+ āa

†āiājak�

Triplet

f3hp
�I� fi�ja 2−1/2�aa

†aiajāj − āa
†āiajāj�

f3hp
�II� fi�j�ka 2−1/2�aa

†āiajak+ āa
†aiājāk�

f3hp
�III� fi�j�ka 2−1/2�aa

†aiājak+ āa
†āiajāk�

f3hp
�IV� fi�j�ka 2−1/2�aa

†aiajāk+ āa
†āiājak�
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The spin-adapted expressions of each block are shown in the
Appendix.

III. RESULTS AND DISCUSSION

A. Comparison of approximate self-energy terms

The four lowest DIPs for NH3 and H2O were calculated
with the sum of two occupied orbital energies which corre-
sponds to a zeroth-order, two-electron propagator, the first-
order propagator, the second-order propagator, the self-
energy of Eq. �36�, and the SD2 approximation. Molecular
geometries based on experimental data shown in Table III
were used. All calculations were performed with Dunning’s
augmented, correlation-consistent, polarized-valence,
double-� basis �aug-cc-pVDZ� �Ref. 49� using a modified
version of the NWCHEM 5.0 program package.50

Numerical results of the DIPs with experimental values
from Auger spectroscopy1,2 are listed in Table IV. The
second-order propagator overcorrects the DIPs of the first
column. It is especially noteworthy that the DIPs for 3B1 and
1A1 dicationic states in H2O are misordered in the zeroth-
order approximation. The propagator results include not only
electron correlation and orbital relaxation effects but also
Coulomb interactions between the two holes. 3E and 1E in
NH3

2+ are degenerate at the zeroth-order level, but are sepa-
rated by 1.36 eV in the second-order column. In comparison
with the experimental values, however, the second-order
Dyson method is inadequate for performing a quantitative
analysis of Auger spectra.

The self-energy of Eq. �36� includes third-order 3hp
terms. Calculated DIPs are underestimated due to overcor-
rection by the third-order self-energy. The SD2 self-energy
produces results that are in good agreement with experiment.
Ladder diagrams in all orders from 3hp configurations con-
siderably improve the second-order propagator. Contribu-
tions of off-diagonal elements of the first-order 3hp-3hp ma-
trix are much smaller than those of the diagonal elements. As
mentioned in the shifted-denominator approximation section,
the SD2 method avoids double loops over 3hp indices.
Therefore, the SD2 method is an accurate and efficient ap-
proximation for calculating vertical DIPs of molecules.

B. Numerical results on vertical DIPs

DIPs for NH3, H2O, C2H2, C2H4, CO, and H2CO were
calculated by the second and SD2 methods. To compare with
other theories, we also calculated DIPs by indirect energy-
difference methods including CI singles and doubles
��CISD� and CCSD51 with perturbative triples corrections52

��CCSD�T��. An EOM-CCSD approach53,54 also was exam-
ined. In this approximation, CCSD calculations are per-
formed on the molecule and the lowest singlet and triplet
states of the dication to obtain the first DIPs for each final-
state multiplicity. To infer higher singlet and triplet DIPs,
EOM-CCSD excitation energies for the dication are calcu-
lated using the reference state with the same multiplicity. Our
numerical results, ADC�2� reports, and experimental values
from Auger spectroscopy, DCT, TPEsCO, and PEPECO are
listed in Table V–X for each molecule.

SD2 results are in good agreement with experimental
values. To systematically examine the quality of the SD2
results, we compare to DIPs from �CISD, �CCSD�T�, and
EOM-CCSD. For 12 DIPs, the SD2 method yields average
absolute deviations from �CISD and �CCSD�T� of 0.44 and
0.31 eV, respectively. For 36 DIPs, the SD2 method gener-
ates an average absolute error from EOM-CCSD of only
0.26 eV. The largest discrepancy of SD2 and the other meth-
ods occurs for the first 1A1g state of C2H4

2+. This final state
has two holes in the reference state’s highest occupied mo-
lecular orbital. The use of a more accurate reference state

TABLE III. Molecular geometries and the SCF total energies.

Molecule Length �Å� Angle �°� Energy �a.u.�

NH3 1.0170 107.80 −56.205 29
H2O 0.9584 104.45 −76.041 91
C2H2 C–C 1.2030 −76.828 43

C–H 1.0587
C2H4 C–C 1.3390 H–C–H 117.60 −78.043 43

C–H 1.0856
CO 1.1280 −112.755 62

H2CO C–O 1.2078 H–C–H 116.50 −113.885 12
C–H 1.0587

TABLE IV. Vertical DIPs �eV� for NH3 and H2O calculated with sum of orbital energies �	i+	 j�, the first-order
propagator, the second-order propagator, the self-energy terms of Eq. �36�, and the SD2 method. Experimental
values are from Auger electron spectroscopy.

No. State 	i+	 j First Second Eq. �36� SD2 Exp.a

NH3

1 1A1 23.14 39.53 30.98 26.09 35.81 35.36
2 3E 28.67 41.95 33.55 29.39 37.87
3 1E 28.67 43.39 34.91 30.19 39.58 40.09
4 3A2 34.19 46.87 39.35 35.21 43.47

H2O
1 3B1 29.78 46.30 33.77 27.82 39.76 39.1
2 1A1 27.70 47.27 34.35 27.93 41.34 41.3
3 1B1 29.78 48.41 35.82 29.78 42.38
4 3A2 33.40 49.38 39.08 32.55 43.82

aReferences 1 and 2.
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may reduce SD2’s errors. However, most results of the SD2
method are in good agreement with EOM-CCSD.

From the tables, it can be seen that the ADC�2� method
underestimates DIPs by �1–2 eV. The main difference be-
tween SD2 and ADC�2� is the treatment of the self-energy
term arising from the 2p operator space, as mentioned in
previous section. The SD2 method employs an energy-
dependent self-energy term, whereas the ADC�2� method has
an energy-independent term.

IV. CONCLUSIONS

We have formulated the second-order, two-electron
Dyson propagator using superoperator theory and the
shifted-denominator approximation �SD2�. The spin-adapted
superoperator Hamiltonian was presented by introducing a
spin-adapted basis for singlet and triplet states. Numerical
tests for vertical DIPs showed that the results from the SD2
method were in good agreement with experiment. To system-
atically examine the quality of the results, we compared
DIPs calculated with the SD2 and EOM-CCSD methods.
The average absolute error was 0.26 eV for 36 doubly ion-
ized states. This remarkable outcome is likely to arise from
cancellation of basis set and correlation errors; nonetheless,
the SD2 method has considerable promise. Because the SD2
method, like the P3 and NR2 approximations of electron

propagator theory,27,28 has no parameters, it can be applied in
an unbiased manner for the prediction of double electron
binding energies.
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APPENDIX A: MATRIX ELEMENT FORMULAS

1. Approximate self-energy terms

In this appendix, explicit expressions of the self-energy
terms including first-order 3hp corrections are evaluated. As
mentioned in the Theory section, the second-order self-
energy matrix in Eq. �31� can be separated into three parts as

��2��E� = ��2���� + �2p
�2��E� + �3hp

�2� �E� , �A1�

where ��2���� contains the first and second terms of Eq. �31�,
�2p

�2��E� is the third term and �3hp
�2� �E� corresponds to the

fourth and fifth terms. The third-order self-energy formulas
for the two-electron propagator were evaluated with an
analysis of the Feynman diagrams by Tarantelli and

TABLE V. Vertical DIPs �eV� of ammonia �NH3�.

No. State

This work

ADC�2�a Augerb
DCTc

H+ /F+Second SD2 CISD CCSD�T� EOM

1 1A1 30.98 35.81 35.17 35.42 35.33 34.19 35.36 35.5
2 3E 33.55 37.87 37.67 37.96 37.87 36.69 38.0
3 1E 34.91 39.58 39.53 38.35 40.09 39.4
4 3A2 39.35 43.47 43.65 42.59 43.7
5 1E 40.69 45.39 44.37 46.08 44.7
6 1A1 42.34 47.54 45.00 48.81

aReference 40.
bReference 1.
cReference 7.

TABLE VI. Vertical DIPs �eV� of water �H2O�.

No. State

This work

ADC�2�a Augerb
DCTc

H+
DCTd

F+ /OH+Second SD2 CISD CCSD�T� EOM

1 3B1 33.77 39.76 39.62 39.93 39.83 38.5 39.1 40.06
2 1A1 34.35 41.34 40.96 41.16 41.10 39.6 41.3 41.4
3 1B1 35.82 42.38 42.54 41.2
4 3A2 39.08 43.82 44.09 42.0 43.2
5 1A1 39.11 45.79 44.3 46.3 45.5
6 1A2 39.69 45.76 46.04 44.8
7 3B2 41.17 45.60 46.08 44.8 45.5
8 1B2 41.98 47.98 47.0
9 1A1 47.13 53.25 52.1 53.2

aReference 41.
bReference 2.
cReference 8.
dReference 9.
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Cederbaum.38 Because many diagrams were involved in the
third-order BS equation, they presented only orbital forms
for the energy-independent part of the self-energy. The for-
mulas correspond to ��3���� and �2p

�3��E� in the two-electron
Dyson propagator. Therefore, a new derivation of the energy-

dependent self-energy �3hp
�3� �E� is useful for introducing vari-

ous approximations for the propagator.
Using the first-order 3hp-3hp Hamiltonian matrix ele-

ment in Table I the spin-orbital forms of the third-order self-
energies of Eq. �36� are expanded into

��3hp
�3� �E�
ij,kl = ��3hp

�2� �E�
ij,kl + �1 − Pij��1 − Pkl��1

4 �
pq,ab

�ia � pq	�jb � la	�pq � kb	
�E − 	 jpq,a��E − 	lpq,b�

+
1

2 �
pq,ab

�ia � lp	�jb � qa	�pq � kb	
�E − 	 jlp,a��E − 	lpq,b�

+ H.c.

−
1

2 �
pq,ab

�ia � lp	�pb � qa	�jq � kb	
�E − 	 jlp,a��E − 	 jlq,b�

+
1

2 �
pqr,a

�ia � lp	�jp � qr	�qr � ka	
�E − 	 jlp,a��E − 	lqr,a�

+ H.c. − �
pqr,a

�ia � pq	�jq � lr	�pr � ka	
�E − 	 jpq,a��E − 	lpr,a�

−
1

4
� jl �

pqrs,a

�ia � pq	�pq � rs	�rs � ka	
�E − 	 jpq,a��E − 	lrs,a�

+
1

2
� jl �

pqr,ab

�ia � pq	�qb � ra	�pr � kb	
�E − 	 jpq,a��E − 	lpr,b� 
 , �A2�

TABLE VII. Vertical DIPs �eV� of acetylene �C2H2�.

No. State

This work

ADC�2�a Augerb
DCTc

H+
DCTd

OH+Second SD2 CISD CCSD�T� EOM

1 3�g
− 29.20 32.48 31.57 32.17 31.95 31.35 32.7

2 1�g 30.22 33.74 32.94 33.38 33.21 32.47 33 33.7
3 1�g

+ 31.15 34.91 33.24
4 3�u 34.75 37.68 37.43 36.75 37.9
5 1�u 35.41 38.61 38.24 37.64 37.6 38.4
6 3�g 36.37 39.31 39.02 38.15 39.6
7 1�g 38.26 40.80 40.27 39.62 39.3 41
8 1�g

+ 41.71 44.34 43.30 42.6 45.9
9 3�u

− 42.82 44.75 43.81
10 3�u 41.76 46.23 44.58

aReference 42.
bReference 3.
cReference 10.
dReference 11.

TABLE VIII. Vertical DIPs �eV� of ethylene �C2H4�.

No. State

This work

ADC�2�a Augerb
DCTc

H+
DCTd

OH+Second SD2 CISD CCSD�T� EOM

1 1Ag 28.35 31.23 30.14 30.72 30.51 29.46 30.1 29.4
2 3Ag 29.29 31.50 31.45 31.76 31.72 30.65 31.4
3 1Ag 29.74 32.11 32.07 31.19 32.2
4 3B3u 30.95 33.89 33.93 32.78
5 1Ag 32.66 34.76 33.93 34.5 34.0
6 1B3u 31.80 34.93 34.72 33.81 34.0
7 3B1g 32.41 35.17 34.80 33.73 34.9
8 3B3g 33.23 35.71 35.84 34.96
9 1B1g 33.28 36.11 34.87 35.2
10 3B1u 34.93 36.61 36.51 35.92
11 1B3g 34.38 37.14 36.31 37.0
12 3B2g 35.59 38.43 38.14 36.87 38.2
13 3B2u 36.35 39.32 38.31
14 1Ag N.C.e 39.54 38.37 38.5 40.0
15 1B2u 36.97 39.62 38.57

aReference 43.
bReference 4.
cReference 12.
dReference 13.
eNo convergence.
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where

	ijk,a = 	 j + 	 j + 	k − 	a, �A3�

the indices i , j , . . . and p ,q , . . . stand for occupied spin orbit-
als, and a ,b refer to virtual spin orbitals. H.c. means the
Hermitian conjugate term. From Eq. �A2�, the third-order
self-energy terms are included in multiloop structures with
more than four indices. The multiloops arise from double
3hp indices and cause an increase in computational time.

The formulation of the self-energy in Eq. �38� is given
by replacing the denominators of Eq. �A2� with

	ijk,a → 	ijk,a + Wijk,a, �A4�

where

Wijk,a = �1 + Pij + Pjk���ja � ja	 − �ik � ik	� . �A5�

The shifted denominator with the first-order diagonal
3hp-3hp element considerably improves the second-order
propagator, but multiloop structures remain in this self-
energy term.

In the SD2 approximation, the multiloops can be
avoided by neglect of the off-diagonal elements of the first-
order 3hp-3hp matrix. The self-energy term from the 3hp
configuration is

��3hp
�SD2��E�
ij,kl = �1 − Pij��1 − Pkl�


�1

2
� jl �

mn,a

�ia � mn	�mn � ka	
E − 	 jmn,a − Wjmn,a

− �
m,a

�ia � lm	�jm � ka	
E − 	 jlm,a − Wjlm,a


 . �A6�

This improvement facilitates the calculation of self-energy
matrix elements and yields accurate DIPs as described in
Sec. III.

2. Spin-adapted superoperator Hamiltonian matrix
elements

We present explicit expressions of the spin-adapted ele-
ments of the superoperator Hamiltonian matrix for the SD2
method. Spin-adapted operators were displayed in Eq. �42�

TABLE IX. Vertical DIPs �eV� of carbon monoxide �CO�.

No. State

This work

ADC�2�a Augerb
DCTc

H+ TPEsCOdSecond SD2 CISD CCSD�T� EOM

1 3� 39.03 41.34 40.86 41.27 41.17 41.13 41.29
2 1�+ 39.12 41.58 41.64 41.01 41.43 40.86 41.52 41.70
3 1� 39.66 42.16 42.16 41.68 42.2 41.81
4 3�+ 41.15 43.27 42.93 43.7 43.57
5 1�+ 42.13 45.78 45.91 44.36 45.8 45.51 45.48
6 3�− 41.24 46.33 45.56 44.96
7 1� 42.74 48.24 46.80 48.1
8 3� 42.77 48.32 47.32

aReference 44.
bReference 5.
cReference 14.
dReference 15.

TABLE X. Vertical DIPs �eV� of formaldehyde �H2CO�.

No. State

This work

ADC�2�a Augerb PEPECOcSecond SD2 CISD CCSD�T� EOM

1 1A1 28.57 32.67 33.14 32.89 33.04 31.69 33.8 33.0
2 3A2 31.06 35.26 35.19 34.16 35.5
3 3B2 31.51 36.23 35.48
4 1A2 32.35 36.46 36.78 35.47 37.0
5 3A1 34.22 36.55 36.46 37.08 36.74 35.83 36.964
6 1B2 33.23 38.19 38.67 37.23 39.3 38.5
7 1A1 35.08 40.04 39.95 39.07 40.4
8 3B2 38.39 40.93 40.10
9 3B1 35.86 40.96 39.53 40.5
10 1B2 40.18 41.80 40.63
11 3A2 38.27 41.56 40.54
12 1A1 36.90 42.20 40.26 42.3
13 3B2 39.19 42.50 41.86

aReference 45.
bReference 6.
cReference 16.
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and Table II. Expressing second-order elements of the 2h-2h
superoperator Hamiltonian matrix over spin-adapted func-
tions yields the following expression;

�Ĥ2h,2h
�2� 
ij,kl = NijNkl�aiāj � āiaj�Ĥakāl � ākal�2

= NijNkl��aiāj�Ĥakāl�2 � �āiaj�Ĥakāl�2

� �aiāj�Ĥākal�2 + �āiaj�Ĥākal�2� , �A7�

where the normalization constant is

Nij = ��2�1 + �ij��−1/2 �for singlet�
2−1/2 �for triplet� .

� �A8�

The indices �i , j ,k , l� refer to occupied spatial orbitals. The
upper sign refers to singlets �i� j, k� l� and the lower sign
refers to triplets �i� j, k� l�. From Eq. �A7�, the expression
of the second-order element is given by

�Ĥ2h,2h
�2� 
ij,kl =

1

4
NijNkl�1 � Pij��1 � Pkl� �

m,ab

�1 − �ab/2�


�Vim,abVkm,ab + Vmi,abVmk,ab

+ �im � ab	�km � ab	�


� 1

	i + 	m − 	a − 	b
+

1

	k + 	m − 	a − 	b

 .

�A9�

Spin-adapted expressions of other matrix elements are
derived and listed in Tables XI and XII for singlet and triplet
states, respectively. Expressions for the diagonal elements of
the 3hp-3hp blocks also are reported.
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TABLE XI. Singlet matrix elements of spin-adapted first-order Ĥ blocks.
The diagonal orbital energy terms are omitted. �ij��kl	�=Vij,kl�Vij,lk.

Block Element Formula

�aa �Ĥaa�
Ĥ2h−2h

�1� Ĥi�j,k�l
−NijNkl�ij��kl	+

Ĥ2h−2p
�1� Ĥi�j,a�b

−NijNab�ij��ab	+

�aa �Ĥf4�
Ĥ2h−3hp

�1��I� Ĥi�j,k�la
21/2Nij�1+ Pij��� jl�Via,lk− �ia��kl	−�−� jkVia,ll


Ĥ2h−3hp
�1��II� Ĥi�j,k�l�ma

−Nij�1+ Pij��� jl�ia��km	+

�− �1+ Pkm�� jm��ia��kl	−+Via,kl�


Ĥ2h−3hp
�1��III� Ĥi�j,k�l�ma

31/2Nij�1+ Pij��� jl�ia��km	−+ �1− Pkm�� jkVia,lm


�f4 �Ĥf4�
Ĥ3hp−3hp

�1��I−I� Ĥi�ja
−�1− Pia− Pja���ij��ij	−+Vij,ij
+ �ia��ia	+

Ĥ3hp−3hp
�1��II−II� Ĥi�j�ka

−2−1�1+ Pik���ij��ij	−+Vij,ij − �ia��ia	−−Via,ia

+��ja��ja	−−Vja,aj�− �ik��ik	+

Ĥ3hp−3hp
�1��III−III� Ĥi�j�ka

−2−1�1+ Pik���ij��ij	++Vij,ij −2�ia��ia	−+Via,ai

+Vja,ja− �ik��ik	−

TABLE XII. Triplet matrix elements of spin-adapted first-order Ĥ blocks.
The diagonal orbital energy terms are omitted.

Block Element Formula

�aa �Ĥaa�
Ĥ2h−2h

�1� Ĥi�j,k�l
−�ij��kl	−

Ĥ2h−2p
�1� Ĥi�j,a�b

−�ij��ab	−

�aa �Ĥf4�
Ĥ2h−3hp

�1��I� Ĥi�j,k�la
�1− Pij��� jkVia,ll−� jlVia,kl


Ĥ2h−3hp
�1��II� Ĥi�j,k�l�ma

�1− Pij��� jm�ia��lk	−+ �1− Pkl�� jkVia,ml


Ĥ2h−3hp
�1��III� Ĥi�j,k�l�ma

�1− Pij��� jl�ia��km	−+ �1− Pkm�� jmVia,lk


Ĥ2h−3hp
�1��IV� Ĥi�j,k�l�ma

�1− Pij��� jk�ia��ml	−+ �1− Plm�� jlVia,km


�f4 �Ĥf4�
Ĥ3hp−3hp

�1��I−I� Ĥi�ja
−�1− Pia���ij��ij	−+Vij,ij
−Vjj,ij +Via,ia

Ĥ3hp−3hp
�1��II−II� Ĥ j�j�ka

−�1− Pia− Pja���ij��ij	−−Vka,ka


Ĥ3hp−3hp
�1��III−III� Ĥ j�j�ka

−�1− Pia− Pka���ik��ik	−−Vja,ja


Ĥ3hp−3hp
�1��IV−IV� Ĥ j�j�ka

−�1− Pja− Pka���jk��jk	−−Via,ia
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