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X-ray crystallography has shown that an antibody paratope
typically binds 15–22 amino acids (aa) of an epitope, of which
2–5 randomly distributed amino acids contribute most of the
binding energy. In contrast, researchers typically choose for
B-cell epitope mapping short peptide antigens in antibody bind-
ing assays. Furthermore, short 6 –11-aa epitopes, and in partic-
ular non-epitopes, are over-represented in published B-cell
epitope datasets that are commonly used for development of
B-cell epitope prediction approaches from protein antigen
sequences. We hypothesized that such suboptimal length pep-
tides result in weak antibody binding and cause false-negative
results. We tested the influence of peptide antigen length on
antibody binding by analyzing data on more than 900 peptides
used for B-cell epitope mapping of immunodominant proteins
of Chlamydia spp. We demonstrate that short 7–12-aa peptides
of B-cell epitopes bind antibodies poorly; thus, epitope mapping
with short peptide antigens falsely classifies many B-cell
epitopes as non-epitopes. We also show in published datasets of
confirmed epitopes and non-epitopes a direct correlation
between length of peptide antigens and antibody binding. Elim-
ination of short, <11-aa epitope/non-epitope sequences
improved datasets for evaluation of in silico B-cell epitope pre-
diction. Achieving up to 86% accuracy, protein disorder tend-
ency is the best indicator of B-cell epitope regions for chlamyd-
ial and published datasets. For B-cell epitope prediction,
the most effective approach is plotting disorder of protein
sequences with the IUPred-L scale, followed by antibody reac-
tivity testing of 16 –30-aa peptides from peak regions. This strat-
egy overcomes the well known inaccuracy of in silico B-cell
epitope prediction from primary protein sequences.

Knowledge of B-cell epitopes of proteins is essential in many
fields of applied biomedical research, such as antibody diagnos-
tics and therapeutics, vaccines, as well basic research. Labora-
tory methods for identification of such epitopes are time-con-
suming and labor-intensive. Hence, any reduction in the need
for discovery and confirmatory wet-lab research by epitope
prediction algorithms is highly desirable. Among in silico pre-
dictive methods from primary sequence information, epitope

prediction algorithms are distinguished for their lack of reliabil-
ity (1). This underperformance prompted us to examine cur-
rent approaches to B-cell epitope prediction by use of extensive
data on epitopes and confirmed non-epitope regions of the
Chlamydia spp. proteome, accumulated in research on chla-
mydial molecular serology (2).

Recent three-dimensional antibody-antigen complex studies
(3–7) show that about 15–22-aa2 antigen peptide residues are
structurally involved in binding of epitopes to �17-aa residues
in antibody complementarity-determining regions (CDRs;
paratopes). Among these 15–22 structural epitope residues,
about 2–5 aa, termed functional residues, contribute most of
the total binding energy to antibodies (6). These functional res-
idues lie only in a very small fraction of B-cell epitopes closely
spaced to each other and embedded among the structural res-
idues, representing the classical concept of continuous B-cell
epitopes. In the vast majority (�90%) of B-cell epitopes, func-
tional as well as structural residues are randomly distributed
within 15–150-aa linear antigen sequences, essentially repre-
senting discontinuous epitopes. Thus, a peptide antigen can
effectively bind an antibody only if it contains the majority of
the functional residues, and only a small fraction of the short
peptides of 4 –11 aa will contain sufficient functional residues
for high affinity binding (6). Therefore, short peptide targets in
B-cell epitope mapping and prediction may represent an inher-
ent, unsolvable conundrum, because most of these short pep-
tides, even from proven dominant epitope regions, will fail to
bind antibodies strongly and therefore will give many false-
negative (non-epitope) results.

Mammalian immune systems can be forced to generate anti-
bodies against virtually any molecule, regardless of antigen ori-
gin, by using excessive amounts of adjuvants and antigens.
However, the antibody response did evolve in response to infec-
tions that generate much lower antigen exposure, thus antibod-
ies may be preferentially directed toward proteins and peptide
regions with certain biological, structural, and physiochemical
properties that determine optimal epitopes. Antibody forma-
tion during an immune response to any given epitope is inher-
ently stochastic due to the random availability of a cognate
B-cell receptor within the large pool of circulating B-cells, all
with different B-cell receptors generated by recombination of
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the antibody response to any given protein is the exposure of a
protein to the immune system. Wang et al. (9) report that only
4.2% of about 900 Chlamydia trachomatis (Ctr) proteins induce
natural antibody responses in �40% of human hosts. There-
fore, any peptide of the remaining 95.8% non-immunodomi-
nant proteins is unlikely to elicit antibodies, regardless of its
B-cell epitope properties. Hence, for accurate evaluation of
epitope prediction methods, epitope/non-epitope data should
be derived from testing of known immunodominant proteins,
with multiple rather than single sera to account for the stochas-
ticity of the antibody response.

B-cell epitope prediction has been first based on various
properties of individual amino acids (aa) such as hydrophilicity,
hydrophobicity, solvent accessibility, flexibility, or �-turn pro-
pensity, and combinations thereof (10 –16). However, even the
best combinations of aa propensity scales performed only mar-
ginally better than random sequence selection (1). With the
availability of B-cell epitope databases, antigenicity scales (17,
18) and machine learning approaches (19 –24) have been
attempted, and improved prediction accuracy has been
reported. Nevertheless, due to epitope redundancy (20), the
predictive power may have been overestimated because these
algorithms performed poorly on independent data (24). There-
fore, B-cell epitope prediction algorithms must be evaluated on
independent datasets that had not been used to train/develop
the algorithms/scales.

The ever increasing number of solved three-dimensional
protein structures has allowed the development and testing of
numerous complex algorithms for prediction of physicochem-
ical and structural properties of proteins directly from the aa
sequences. Among these properties (scales), disorder tendency
describes protein regions without defined three-dimensional
structure that are inherently flexible, hydrophilic, solvent
accessible, and thermally mobile (high B-factor) (25, 26). Inci-
dentally, all of these properties are shared with B-cell epitopes
(16); thus, protein disorder tendency is a prime candidate scale
for B-cell epitope prediction due to its multifaceted properties
(27).

This investigation is an extension of a comprehensive study
that identified immunodominant B-cell epitopes of Chlamydia
spp. (2). After encountering numerous failures of in silico B-cell
epitope prediction, we used the first principles established
above to analyze the shortcomings of B-cell prediction meth-
odology. Using pools of hyperimmune mouse sera, we deter-
mined epitope/non-epitope regions of immunodominant
Chlamydia spp. proteins by use of long 16 – 40-aa peptide anti-
gens. These data created epitope/non-epitope datasets for
accurate testing of numerous B-cell epitope prediction or
aa/protein property algorithms/scales (henceforth termed
scales). Subsequent testing revealed that public datasets were
biased toward short epitope/non-epitope antigens, and
removal of these short antigens dramatically increased predic-
tion accuracy of most scales. We show that in general machine
learning methods cannot predict epitopes with high accuracy;
rather, many scales designed for prediction of protein proper-
ties, particularly disorder tendency, identify B-cell epitopes
with better accuracy.

Experimental Procedures

B-cell Epitope Peptide Reactivity with Anti-chlamydial
Hyperimmune Sera—Hyperimmune sera were raised in mice as
described previously (2). Briefly, 9 –50 mice were challenged
three times with high but non-lethal intranasal chlamydial
inocula, to mimic antibody production following natural infec-
tions. Bovine sera used were obtained from animals with PCR-
confirmed natural Chlamydia spp. infection (2). Peptide anti-
gens were chemically synthesized with N-terminal biotin,
captured onto streptavidin-coated microtiter plates, and incu-
bated with hyperimmune sera. Primary antibodies were
detected with horseradish peroxidase-conjugated secondary
antibodies in chemiluminescent ELISA, and data were
expressed as relative light units/s (rlu/s) and for ease of display
were divided by 1,000 (rlu/s � 10�3) (2). All peptides were
analyzed on white microtiter plates by use of specific positive
pooled hyperimmune sera as well as negative control sera in
wells coated with specific peptides and in a non-coated well. For
the final background-corrected results, 150% of the back-
ground signal (mean � 2 S.D.) in the non-coated well of each
serum was subtracted from its specific peptide signals. To avoid
false-positive results in quantitative evaluation of the reactivity
of any peptide with individual mouse sera, and with bovine sera
from naturally infected cattle, we used a more stringent cutoff
of 10,000 rlu/s. Overall methods are described in detail by Rah-
man et al. (2).

B-cell Epitope/Non-epitope Datasets—These datasets are
described briefly below, and a detailed description is provided
in supplemental Table S1, and sequences are provided in the
supplemental Appendix.

Concatenated Epitope/Non-epitope Virtual Proteins—
Epitopes and non-epitopes of the Lbtope_Fixed_non_redun-
dant and Lbtope_ Confirm datasets (24) were grouped by
sequence length. Concatenated polyproteins of the sequences
of each group were constructed by randomly combining all
sequences. Similarly, concatenated polyproteins of Swiss-
Prot sequences were constructed by randomly combining all
sequences of the BCP12, BCP14, or BCP18 datasets (20).

Concatenated Virtual Proteins of 50-Amino Acid-extended
Epitopes/Non-epitopes Embedded in Random Sequences—All
16 –20-aa epitopes of Lbtope_Confirm and fbcpred.pos.nr80
datasets were extended symmetrically to 50 aa with source pro-
tein sequences. These fragments were interspersed with ran-
dom 150-aa Swiss-Prot sequences into a concatenated virtual
polyprotein. Similar polyproteins were assembled from all
16 –33-aa non-epitopes of the Lbtope_Confirm dataset and all
epitopes/non-epitopes of the Chl_18Prot and Chl_43Prot data-
sets. For assembly of additional non-epitope datasets, random
50-aa peptides of the Bcpreds epitope source proteins (Bcpreds_
Prot), Swiss-Prot proteins, and the C. trachomatis proteome
(28) were similarly linked with 150-aa interspacing sequences
into concatenated polyproteins.

B-cell Epitope/Non-epitope Annotation of Individual Chla-
mydia spp. Proteins—All residues of 18 immunodominant pro-
teins of Chlamydia spp. were annotated in the Chl_18Prot
dataset as Pos (positive, epitope), Neg (negative, non-epitope),
or NT (not tested, unknown epitope status). The annotation is
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based on the reactivity of 16 –20-aa peptide antigens with
murine and/or bovine sera. For peptide datasets, 10-aa-spaced
peptides of these proteins were used.

Computation of Amino Acid Residue Scores for Physicochem-
ical, Structural, and Evolutionary Protein Properties—Website-
based freeware algorithms/scales (10 –15, 17–20, 22–24,
29 –55) for protein properties were used to calculate individual
residue scores for aa sequences of individual or polyproteins.
Moving window scores were assigned to the center residue of
the particular window. When required, missing scores for N-
and C-terminal residues were inserted using scores of the adja-
cent residues. If algorithms/scales did not provide an output
score for internal residues/windows, the minimum score of this
protein was inserted. The polymorphism score was calculated
by inverting the multiple sequence conservation score of the
AACon algorithm in the Jalview freeware (35).

Comparison of Receiver Operating Characteristic (ROC)
Curves of Protein Property Scales for B-cell Epitope Prediction—
Bimodal epitope/non-epitope classification was achieved by F
test classification based on the linear predictor variable in dis-
criminant analysis with the software package JMP Pro 11 (SAS
Institute Inc., Cary, NC). This software was also used to con-
struct ROC curves and calculation of area under the ROC curve
(AUC) for ranking of protein property scales for B-cell epitope
prediction. Data formatting was performed in Microsoft Office
Excel 2013, and all additional statistical analyses were per-
formed by the Statistica 7.1 software package (Statsoft, Tulsa,
OK). Differences between means of peptide reactivities and/or
background were analyzed by one-tailed paired Student’s t test,
and p values � 0.05 were considered significant. The signifi-
cance of differences between B-cell epitope prediction scales
was tested by one-tailed paired Student’s t tests of AUCs of
ROC analyses. If multiple independent test datasets were avail-
able, the mean AUC values of these scales for these datasets
were compared. If multiple proteins of a single dataset were
available, the mean AUC values for these proteins were com-
pared. If ROC curves for different B-cell epitope prediction
scales were analyzed for a single dataset, specificity was sam-
pled in 0.05 increments for sensitivities from 0.05 to 0.85 and in
0.02 increments from 0.90 to 0.98, and the specificity means
were compared, or the mean accuracy values at 40, 60, 80, 90,
and 95% sensitivity were compared.

Results

Antibody Binding Increases with Length of Peptide Antigens—
Within a peptide B-cell epitope, 15–22 residues are typically
structurally involved in antibody binding (3–7). Sivalingam and
Shepherd (6) reasoned that clustering or random distribution
of the structural residues would determine the length of peptide
antigens required for antibody binding. In this study, we tested
length-dependent peptide antigen reactivity for previously
identified epitope regions of the chlamydial outer membrane
protein A, OmpA (2). Seven-12-aa peptide antigens invariably
produced lower ELISA signals than longer ones (Fig. 1A). Occa-
sionally, extensive elongation of peptide antigens may mask
structural residues and reduce the signal relative to a slightly
shorter peptide antigen of optimum length (Fig. 1A; 32- versus
24-aa Cpe peptides).

To quantify the effect of peptide length on antibody binding,
peptide antigens of different lengths from 17 epitope regions of
OmpA and inclusion membrane A (IncA) proteins of Chla-
mydia spp. were tested (Fig. 1B). Compared with short 7–12-aa
peptides, intermediate 16-aa peptides produced 1.8-fold ELISA
signal intensity, and long 24 – 40-aa peptides produced 4.1-fold
signal intensity (p value �10�2, one-tailed Student’s t test, rel-
ative log-transformed signal). Importantly, the main 14.3-fold
reactivity increase was achieved by elongation of the 13 lowest
reactive short peptides from 7–12 to 24 – 40 aa (p value �10�4),
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FIGURE 1. Peptide reactivity increases with length. A, elongation of pep-
tides around the center of two epitopes increases the ELISA signal; RLU, rela-
tive light units/s, mean of six repeats; %, percent signal of maximally reactive
peptide; Ctr, C. trachomatis; numbers indicate peptide position on the OmpA
protein; Cpe; Chlamydia pecorum. B, relative signal from 17 epitopes in depen-
dence on peptide antigen length. Peptides for 17 epitopes were extended
toward the C and N terminus by 12–20 residues around the epitope center
(long 24 – 40-aa peptides), 8 residues (intermediate 16-aa peptides), or 3– 6
residues (short 7–12-aa peptides) and tested with the respective epitope-
positive pooled hyperimmune mouse sera. Peptide reactivities are repre-
sented by vertical lines in the same order for long, intermediate, and short
peptides. C, relative reactivity with murine antisera of corresponding long
and intermediate peptides of 55 epitopes. D, relative reactivity with bovine
antisera of corresponding long and intermediate peptides of 45 epitopes.
Mapping of epitopes and peptide antigens used for Fig. 1 are described in the
supplemental Appendix.
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whereas elongation of the 13 lowest reactive intermediate 16-aa
peptides from 24 to 40 aa produced a moderate 3.3-fold
increase (p value �10�4).

To identify optimum peptide antigen lengths, we tested the
central 16- and 24 – 40-aa peptide antigens of 55 unique
epitopes on 28 Chlamydia spp. proteins with pooled mouse
sera (Fig. 1C). As observed before, �20% of elongated peptides
produced a reduced signal, presumably due to epitope masking.
However, long 24 – 40-aa peptides produced on average a 2.1-
fold higher signal than the corresponding 16-aa peptides (p
value �10�4). The reactivity of the 28 lowest reactive 16-aa
peptides increased 9.1-fold for the respective long 24 – 40-aa
peptides (p value �10�4). To confirm the host independence of
length-dependent peptide reactivity, another set of chlamydial
peptides yielded equivalent results with bovine sera (Fig. 1D).

Evaluation of B-cell Epitope Prediction Algorithms Con-
founded by Over-representation of Short False-negative
Epitopes in Public Datasets—Many investigators typically use
short peptide antigens of 4 –11 aa for epitope mapping, with
results added to public reference databases that are used for the
development of B-cell epitope prediction algorithms/scales
(10 –24). These datasets may therefore be biased toward short
epitopes and many false-negative epitope determinations due
to the marginal antibody binding of short peptides. This may
explain the poor, close to random, epitope prediction accuracy
(1) that most epitope prediction scales show in practical appli-
cation, even if they scored highly in evaluation with public data-
sets. We hypothesized that removing short epitope/non-
epitope sequences from public datasets would allow correct
performance ranking of B-cell epitope prediction scales. To test
this hypothesis, we used the “Lbtope_Variable_non_redun-
dant” dataset with 8,011 B-cell epitopes and 10,868 non-
epitopes, retrieved by Singh et al. (24) from experimentally val-
idated epitopes as well as non-epitopes from the Immune
Epitope Database (IEDB). Importantly, 5–10-aa non-epitopes
include �50% and 5–16-aa non-epitopes include �80% of all
non-epitopes deposited in the parent IEDB (24). Among the
6–11-, 12–15-, 16–20-, and 21–30-aa sequences, the Lbtope_
Variable_non_redundant dataset contains 2.12�, 1.49�,
0.93�, and 0.54� numbers of non-epitopes compared with
epitopes. These data indicate that short non-epitope sequences
are over-represented in the public knowledge base. For analysis
shown in Fig. 2, epitopes and non-epitopes were grouped by
length, and all sequences of each length group were randomly
concatenated into a single virtual protein. Hydrophilicity of all
consecutive non-overlapping 20-aa peptide windows of each
concatenate was predicted by use of the Parker ProtScale (11) in
ExPASy (29), a parameter used in B-cell epitope prediction.
Results in Fig. 2A show that in the 12–15-, 16 –20-, and
21–30-aa length concatenates, the hydrophilicity scores of
epitope and non-epitope virtual proteins differ highly signifi-
cantly (p value �10�6, Student’s t test). In contrast, the hydro-
philicity of epitope and non-epitope virtual proteins is not dif-
ferent for the 6 –11-aa length concatenates (p value � 0.052).
Thus, for peptides longer than 11 aa, the hydrophilicity scale
discriminates between epitopes and non-epitopes but not for
shorter peptides.

Similarly, with values of �0.50 for the AUC ROC curve, addi-
tional scales in Fig. 2B show random distribution of epitope
versus non-epitope prediction for the 6 –11-aa concatenates. In
contrast, these scales show highly significantly increased pre-
diction accuracy for concatenates of peptides longer than 11
amino acids, indicating significant discrimination between
epitopes and non-epitopes (Fig. 2B). Analysis of the “Lbtope_
Confirm” subset, composed of epitopes/non-epitopes that were
at least twice independently experimentally validated, con-
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FIGURE 2. B-cell epitope prediction score and performance in depen-
dence on peptide length. A, hydrophilicity scores of epitopes and non-
epitopes are grouped by length in the Lbtope_Variable_non_redundant
dataset (24). Hydrophilicity (Parker) (11) scores were obtained by using
default settings in the ProtScale tools of the ExPASy server (29). Length-de-
pendent hydrophilicity (�95% CI) of epitopes and non-epitopes is shown in
green and red, respectively, and the p values for differences are shown in
green. B, epitope length-dependent prediction performance (area under
receiver operating characteristic curve) of different prediction scales in the
Lbtope_Variable_non_redundant dataset. ***, p value �10�6 for comparison
of any scale to any other scale of 6 –11-aa epitopes versus longer epitopes.
Hydrophobicity (Miyazawa, 30), a ProtScale (29) for hydrophobicity;
Bepipred, a hidden Markov model combined with the Parker hydrophilicity
scale (19); IUPred-L, an algorithm for protein disorder tendency (31). C, all
6 –20-aa epitopes and non-epitopes of the Lbtope_Confirm dataset (24)
grouped into 6 –11-, 12–15-, and 16 –20-aa peptides are compared with
Swiss-Prot 12-, 14-, and 18-aa peptides of the Bcpreds BCP12, BCP14, and
BCP18 datasets (20). The p value for hydrophilicity score differences between
epitopes and non-epitopes is shown in green and between non-epitopes and
Swiss-Prot random peptides in blue. All epitopes have higher hydrophilicity
scores than Swiss-Prot random peptides (p value � 10�5).
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firmed the result of the Lbtope_Variable_non_redundant data-
set (Fig. 2C). An additional finding is that the 16 –20-aa non-
epitopes do not have a significantly higher score than the
random Swiss-Prot peptides, although the 6 –11- and 12–15-aa
non-epitopes do (Fig. 2C). This suggests that the Lbtope_Con-
firm dataset may have a high frequency of incorrect identifica-
tion of short 6 –15-aa peptides, particularly 6 –11-aa, as
non-epitopes.

Evaluation Accuracy for B-cell Epitope Prediction Depends on
Epitope/Non-epitope Discrimination in Test Datasets—Ideal
algorithms/scales for prediction of B-cell epitopes should dis-
criminate known epitopes from experimentally validated non-
epitopes and identify epitopes within complete source proteins
and proteomes. Since prediction accuracy should ideally be val-
idated with multiple datasets, we evaluated the prediction per-
formance by use of four positive datasets of experimentally
validated B-cell epitopes and five negative datasets of experi-
mentally validated non-epitopes or of random peptides from
proteomes (Table 1). All 16 –20-aa epitope/non-epitope
sequences of the datasets were centered within their 50-aa
source protein sequences, and these 50-aa sequences were ran-
domly concatenated into a single virtual protein, interspersed

with random 150-aa sequences from the Swiss-Prot database
(supplemental Table S1 and Appendix). For evaluation of B-cell
epitope prediction, we used the original score of each algorithm
with default settings for each amino acid residue, thus each
epitope/non-epitope sequence received individual scores for
the 20 central residues. Correct or incorrect epitope prediction
of all residues was evaluated by AUC in ROC analysis.

In Table 1, the column for each scale indicates epitope versus
non-epitope discrimination (AUC in ROC analysis) of the scale
for each compared combination of positive and negative data-
sets. The average AUC column, next to the rightmost column,
indicates epitope/non-epitope discrimination averaged over all
tested scales and therefore ranks the combined discrimination
in both positive and negative datasets. The four positive data-
sets can be ranked by their AUC in comparison with the nega-
tive Swiss-Prot or Ctr-Proteome datasets, clearly showing sig-
nificantly higher discrimination for both chlamydial datasets
than for the fBcpreds and Lbtope_Confirm datasets (p value
�0.02, one-tailed paired Student’s t test).

The average AUC row, next to the bottom row in Table 1,
indicates epitope/non-epitope discrimination averaged over
the 12 tested pairs of datasets and shows that disorder tendency

TABLE 1
B-cell epitope prediction accuracy (AUC of ROC curves) in dependence on the evaluation dataset

a Datasets with experimentally identified epitopes/non-epitopes or random peptides are shown (see supplemental Table S1).
b AUC data are shown for the best performing scale of each category as defined for all scales tested (see supplemental Tables S2 and S3).
c Antigenicity scale (17), IEDB tool for antibody epitope prediction.
d Support vector machine model (SVM) trained on the Lbtope_Confirm dataset (24).
e Surface accessibility scale (13), IEDB tool for epitope prediction.
f �-turn scale (32), IEDB tool for epitope prediction.
g Average of seven propensity scales for epitope prediction (15).
h Flexibility scale (12), IEDB tool for epitope prediction.
i Quality of scales or datasets was ranked by AUC, with rank number determined by 1 for the highest AUC and addition of 1 for each 0.01 AUC reduction; antigenicity and

Lbtope scales were excluded from ranking because antigenicity is a negative predictor and Lbtope was trained on the analysis dataset.
j Not applicable for quality ranking because the datasets served to train the Lbtope support vector machine model.
k Highest AUC in the compared dataset.
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discriminated best of all algorithms tested (AUC � 0.75 for
IUPred-L [31]), highly significantly better than Bepipred
(AUC � 0.70), the next-best algorithm in the 12 AUC compar-
isons of positive and negative datasets (p value �10�3, one-
tailed paired Student’s t test). Since the machine learning
Lbtope algorithm was trained on the Lbtope_Confirm dataset,
it performed extremely well in this dataset (AUC � 0.97, 0.84,
and 0.81), but very poorly, close to randomization, in all other
datasets (average AUC � 0.57). In contrast, the protein disor-
der scale IUPred-L consistently discriminated best (Table 1),
with AUCs depending on the datasets (0.58 – 0.88).

Wide Amino Acid Context and Standardized Scoring Maxi-
mize B-cell Epitope Prediction Accuracy—Most amino acid pro-
pensity and B-cell prediction scales score the context-depen-
dent epitope likelihood for each amino acid residue by
averaging the adjacent �4 residues (10 –19). In contrast, pro-
tein disorder prediction operates in a wider sequence context
(31). To simulate the wider sequence context, we asked the
question if scores for long peptides improved prediction accu-
racy of narrow-context scales and, if so, what the peptide length
dependence of such an improvement was. In Table 2, we deter-
mined B-cell epitope prediction accuracy for single scores for
the central 1-aa epitope/non-epitope residue and contrasted it
to prediction by single average scores for the central 10-, 15-,
20-, 25-, or 30-aa residues. The mean AUC values of all 12
comparisons of four to five non-epitope datasets (as in Table 1)
are shown in Table 2. The results indicate optimal B-cell
epitope prediction for 20 –30-aa peptide scores. Long peptide
scoring improves prediction substantially for narrow-context
scales such as hydrophilicity, hydrophobicity, flexibility, or
Bepipred but not for wide-context protein disorder tendency
scales such as IUPRed-L and VSL2B.

Table 2 shows prediction of epitopes/non-epitopes embed-
ded in virtual concatenated polyproteins. In this approach, dif-

ferences between the widely divergent average scores of source
proteins cannot be offset by standardization (i.e. set to mean �
0 and S.D. � 1). To eliminate B-cell prediction bias induced by
selection of epitope source proteins, we analyzed scores stan-
dardized for each protein of the 18 chlamydial protein datasets
(Chl_18Prot; supplemental Table S1). Table 3 shows the results
for comparison of experimentally validated epitopes of these
proteins to experimentally validated non-epitopes (Pos versus
Neg) or the total remaining protein (Pos versus Neg � NT).
Standardization substantially improves B-cell epitope predic-
tion accuracy for disorder and solvent accessibility scales, but
not for individual amino acid propensity scales such as hydro-
philicity or hydrophobicity. Similar to results for concatenated
polyproteins (Table 2), standardized scores of long peptides
improve performance of narrow-context but not of wide-con-
text scales (Table 3).

The polymorphism scale for the 18 chlamydial protein data-
set was derived by inverting the Jalview AACon conservation
score (35) calculated from multiple sequence alignments of
these proteins with the available homologous Chlamydia
sequences. Thus, it is completely independent of individual
amino acid properties and quantifies only evolutionary
sequence change at each residue. Standardization of polymor-
phism scores in Table 3 improves prediction because chlamyd-
ial proteins have widely divergent rates of evolution (2). Impor-
tantly, averaging over 25-aa residues again provides maximum
prediction accuracy, suggesting that wide-context properties in
general are the best predictors of B-cell epitopes from their
primary amino acid sequences.

Protein Disorder Most Accurately Predicts B-cell Epitopes—
For epitope/non-epitope discrimination in the ROC curve in
Fig. 3A, sensitivity at given specificity (or specificity at given
sensitivity) of the IUPred-L disorder or the combined scale is
higher than that of Bepipred (19) or LBTope (24) (p value

TABLE 2
20 –30-aa peptide scores optimally predict B-cell epitopes in virtual concatenated polyproteins
References 11, 12, 15, 19, 24, 30 –32 are cited in the table.

a The average of 12 AUC values for the 12-way comparisons of four positive datasets with five negative datasets (Table 1) is shown. Average AUC values that differ by �0.01
from the maximum (bold red font) are shown in red font.

b A single score of the central residue was considered for each peptide in the datasets shown in Table 1.
c Scores of the central 10/15/20/25/30aa residues were averaged to a single peptide score.
d Comparison of 1-aa (single residue) versus 10-aa peptide scoring.
e Comparison of 10-aa versus 25-aa peptide scoring.
F/f AUC significantly higher for 10-aa peptide scoring than for 1-aa scoring (F, 10�6 � p value � 10�3; 10�3� p value � 10�2; one tailed paired Student’s t-test with 12 AUC

values).
G/g AUC significantly higher for 25-aa peptide scoring than for 10-aa peptide scoring (G, 10�4 � p value �10�3; 10-3 � P-value � 0.023).
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�10�4, one-tailed paired Student’s t test). Similarly, when
epitopes were discriminated from the complete remaining pro-
teins in Fig. 3B, IUPred-L scale performed significantly better
than Bepipred or LBTope. In final testing of the overall predic-
tion approach applied to the 18 individual proteins of the
Chl_18Prot dataset, IUPred-L scale also best discriminated
individual epitope residues from the whole remaining protein
(average AUC of IUPred-L � 0.91, minimum � 0.74, maxi-
mum � 1.00, S.D. � 0.08; Table 4).

Marginal Improvement in B-cell Epitope Prediction by Com-
binations of Multiple Scales—In analyses shown in Tables 1 and
2, most epitope/non-epitope sequences were derived from pub-
lic datasets of variable and largely unknown discrimination
accuracy. For maximum accuracy, we therefore selected the 18
chlamydial protein datasets (Chl_18Prot; supplemental Table
S1) with extensively validated epitopes as well as non-epitopes
on each protein, all identified in a single investigation (2). For

the Chl_18Prot dataset, 151 standardized primary scales for
B-cell epitope prediction were evaluated (supplemental Tables
S2 and S3). To improve B-cell epitope prediction, investigators
frequently combine scales (16). To test this concept, we evalu-
ated 126 combined scales that were derived by linear combina-
tion of 2–14 standardized primary scales (Fig. 4 and Tables S2
and S3). In Fig. 4, we asked whether the combined scales,
derived from 25-aa moving averages of the primary scales,
improve B-cell epitope prediction. Results show that the com-
bination of scales only incrementally improves B-cell epitope
prediction (Fig. 4). The best combination of the primary scales
provides only a 3.8% improvement of prediction accuracy over
IUPred-L protein disorder in five tests at 40, 60, 80, 90, and 95%
sensitivities (Fig. 4C, p value �0.049, paired Student’s t test,
with five accuracy values). Collectively, the dominant conclu-
sion is that the main improvement for B-cell epitope prediction

TABLE 3
Standardization of individual protein scores improves B-cell epitope prediction
References 11, 19, 24, 30, 31, 33–35 are cited in the table.

a The Chl-18Prot dataset was analyzed. Pos, Positive (epitopes); Neg, negative (non-epitope); NT, not tested (epitope or non-epitope status is unknown). Pos versus Neg indi-
cates epitopes were compared to non-epitopes; and Pos vs Neg�NT indicates epitopes were compared to the total remaining protein. Average AUC values that differ by
�0.01 from the maximum (bold red font) are shown in red font.

b Solvent accessibility (ASA_Spine-X) residue solvent accessibility (34); polymorphism is sequence divergence in multiple sequence alignment, calculated by inverting the
conservation score of AACon in the Jalview freeware (35).

c Original non-standardized score for central 1-aa residue in the peptides. These scores were obtained with individual protein sequences as input.
d Original scores were standardized (mean � 0 and S.D. � 1) for each of the 18 chlamydial proteins, and the standardized score for the central 1-aa residue in the peptides is

shown.
e Difference in AUC values between standardized and non-standardized scores.
f Sensitivity at a given specificity is significantly higher in ROC curves for standardized versus non-standardized scores (f, 10�6 � p value� 0.01; one-tailed paired Student’s t

test).
g Peptide scores were calculated using the average of standardized scores for the central 5-, 9-, 17-, 25-, 33-, 41- or 49-aa residues.
h Difference in AUC values between standardized scores of 25- and 9-aa peptides.
i Sensitivity at given specificity is significantly higher in ROC curves for 25-aa versus 9-aa standardized scores (i, 10-6 � p value �0.01; one-tailed paired Student’s t test).
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comes from using the optimal IUPred-L primary scale (Tables
3, supplemental Tables S2 and S3, and Fig. 4).

Underperformance of Machine-learning B-cell Prediction
Algorithms—In evaluation of B-cell epitope prediction algo-
rithms, scores of most physicochemical, structural, and evolu-
tionary protein properties are higher than those of machine
learning algorithms (Fig. 5). In addition, the discrimination
power of all scales is higher when epitopes are tested against the
remaining protein than against experimentally validated non-
epitopes (Table 3 and Fig. 5A). As a consequence, the prediction
performance against the remaining total protein sequences is
also consistently higher for all scales. An explanation for this
counterintuitive observation is that non-epitopes had initially
been selected as candidate epitopes by high scores in prediction

scales (Fig. 2) but failed to react with antibodies. The higher
scores for tested non-epitopes thus induced a pre-selection bias
that makes evaluation of B-cell epitope prediction scales more
difficult.

Fig. 5B compares B-cell epitope prediction scales that were
among the best combinations of the primary scales in our study
with several publicly available algorithms/scales that almost
uniformly perform poorly. This poor discriminatory power of
machine learning algorithms most likely results from subopti-
mal training datasets with an over-representation of short non-
epitopes. For example, Lbtope was trained on 80% short
6 –16-aa confirmed non-epitopes. In contrast, Bcpreds was
trained by use of random Swiss-Prot peptides as non-epitopes,
equal in length to confirmed epitopes, and they performed bet-
ter than Lbtope (0.06 – 0.10 AUC value difference between
Bcpreds and Lbtope; Fig. 5B). Among the published combined
B-cell epitope prediction scales, only Bepipred showed accept-
able performance, better than the accurate Parker hydrophilic-
ity scale (0.06 – 0.09 	AUC compared with Parker hydrophilic-
ity; see Table 3). Bepipred nevertheless requires long peptide
scores for optimal performance (0.07– 0.10 	AUC between
25-aa peptide and default scoring; Table 3), and it is not a pure
machine learning algorithm because it combines a protein
property scale, Parker hydrophilicity with a hidden Markov
model (19).

Dominant Properties of B-cell Epitope Regions—Our evalua-
tion of the discriminatory power of B-cell prediction algorithms
in the extensively experimentally confirmed Chl_18Prot data-
set allowed us to deduce some critical global properties that
define natural B-cell epitope regions. Clearly, the dominant
property is the propensity for a disordered state of amino acids
in B-cell epitopes. This property is linearly correlated to hydro-
philicity (inverted Miyazawa hydrophobicity scale (30); R2 �
0.66, p value �10�6; linear regression analysis of the 25-aa pep-
tide scores centered around each residue of the Chl_18Prot
dataset), flexibility (Karplus and Schulz (12); R2 � 0.56, p value
�10�6; solvent accessibility (Spine-X (34); R2 � 0.49, p value
�10�6), evolutionary mutation rate (R2 � 0.43, p value �10�6),
coils in secondary structure (PSIPRED (52); R2 � 0.42, p value
�10�6), and �-turns (Levitt (54); R2 � 0.40, p value �10�6).
Thus, due to multi-collinearity, the multifaceted properties of
protein disorder tendency synthesizes all of these properties
into a single descriptor (Fig. 5). The physicochemical, struc-
tural, and evolutionary properties of B-cell epitope regions dis-
criminate them sufficiently to translate into significant differ-
ences in amino acid composition to the remaining total
proteins. B-cell epitopes are enriched for proline, followed by
glutamic and aspartic acids, asparagine, threonine, alanine, and
serine (Fig. 5C). Epitopes are also relatively depleted of leucine,
isoleucine, tryptophan, phenylalanine, tyrosine, and cysteine.

Proposed B-cell Epitope Prediction—As a result of the preced-
ing analyses, an easily implemented approach for accurate
B-cell epitope prediction has emerged that should be useful for
investigators in many fields of antibody research. Fig. 6 demon-
strates the application of the previous findings for B-cell
epitope prediction in an actual example for which we generated
epitope scanning data of the complete chlamydial protein IncA.
In Fig. 6A, the default IUPred-L and VSL2B disorder scores of
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FIGURE 3. Comparison of ROC curves for prediction of 25-aa epitopes
(Table 3). Plots of epitope-positive rate versus false-positive rate for the 18
chlamydial protein dataset are shown. A, prediction of epitopes from con-
firmed non-epitopes (25-aa epitopes/non-epitopes spaced 10 aa). The com-
bined scale represents the arithmetic mean of two disorder scales, IUPred-L
(31) and VSL2B (33), and one solvent accessibility scale, Accessible Surface
Area, Spine-X (34). B, prediction of epitopes from the total remaining proteins
(non-epitope plus non-tested regions). In both datasets (A and B), the com-
bined scale and the single disorder (IUPred-L) scale performed best (highest
sensitivity at given specificity or vice versa), significantly better than Bepipred
or LBTope (one-tailed paired Student’s t test, p value �10�4).

TABLE 4
Epitope prediction accuracy (AUC) averaged for individual proteins of
the 18-chlamydial protein dataseta

a Original scores obtained with default options for the algorithm/scale were
smoothed by a sliding window method in which the score for each residue was
averaged for the adjacent � 12 residues (25-aa moving window). Smoothed
scores of residues were standardized for each of the 18 chlamydial proteins and
discrimination of epitope residues from remaining total residues was tested for
each of the 18 proteins individually.

b Coils (Spine-X) indicate the coils predicted in secondary structure (36).
c A indicates 0.05 � p value 
 0.01; B indicates 0.01 �p value 
 0.001; C indicates

0.001 
 p value.
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the IncA protein are plotted against IncA residue number. Sol-
vent accessibility and hydrophilicity are shown in Fig. 6, B and
C. In Fig. 6D, noise was reduced by smoothing the scores as
25-aa moving averages, and comparison was improved by stan-
dardizing the data. Comparison of these IncA epitope predic-
tion plots with actual IncA peptide reactivity in Fig. 6E clearly
shows that IUPred-L predicted scores best match experimental
observations and confirm the superior B-cell epitope discrimi-
natory power of protein disorder tendency as calculated by
IUPred-L.

Fig. 6E displays optimal prediction approaches by the com-
bined scores of scales shown in Fig. 6D, and smoothed and
original default IUPred-L scores. While combined scores have
marginally better discriminatory power (Fig. 5), for practical
purposes we consider the accuracy of IUPred-L sufficient. Also,
given the wide-context nature of protein disorder scales, scores
are sufficiently stable to even render smoothing unnecessary,
allowing direct use of default plots obtained from the IUPred-L
webserver for B-cell epitope prediction. Therefore, 16 –30-aa
peptide antigens for laboratory testing can be selected directly
from peak disorder regions of the IUPred-L plot.

Discussion

The results of this study suggest strategies for B-cell epitope
identification that deviate from current approaches that many
investigators use. Our approach initially identifies protein
regions that harbor B-cell epitopes rather than immediately
focusing on identifying peptide antigens of specified length.

B-cell epitope regions can be predicted with high accuracy sim-
ply by selection of the peak regions from the IUPred-L disorder
plot (31) of a protein antigen (Fig. 6E). Next, these high proba-
bility epitope regions should be confirmed with 16 –30-aa-long
peptide antigens using pooled antisera. Fine mapping of highly
reactive regions with overlapping 16-aa peptides, using the
individually reactive antisera of the pool, identifies regions with
several functional aa residues embedded among structural
epitope residues (6). Further reduction in peptide antigen
length entails mapping with very short 6 –12-aa peptides. Suc-
cess at this stage relies on stochastic identification (Fig. 2) of
closely spaced randomly distributed functional residues that
maximally contribute to antibody binding. Antibody binding of
such short peptides is, however, typically low (Fig. 1), most
likely because antigens of less than 16 aa will not bind to the
complete CDR of an antibody (3–7).

This approach is derived from the conclusive evidence that
short 7–12-aa peptide antigens of confirmed Chlamydia spp.
epitopes bind antibodies poorly (Fig. 1), and therefore many of
these epitopes would be falsely classified as non-epitopes if they
were identified by short peptide mapping. The poor reactivity
of short peptide antigens combined with data in Fig. 2 strongly
suggest that many of the short non-epitopes in public B-cell
epitope datasets are likely to be actual epitopes. Most investi-
gators who develop B-cell epitope prediction algorithms/scales
draw training and test datasets from public databases such as
IEDB. These reference datasets are suboptimal due to over-
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FIGURE 4. Combined scales provide only marginal improvement for B-cell epitope prediction. A, prediction by use of primary scales or B, combined scales.
2�D1 � S1, D1 score weighted 2�. Plots of true positive versus false-positive (ROC curve) are shown. C, prediction performance with 25-aa moving average
scores of the Chl-18Prot dataset. At five specified sensitivities, B-cell epitope prediction specificities (Spec) and the corresponding accuracies (Acc) are shown.
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representation of short non-epitope peptides and inherently
compromise the performance (supplemental Tables S2 and S3
and Fig. 5B) of machine learning algorithms (CBTope, LBTope,
COBEpro, BCPreds (20, 22–24)) or antigenicity scales (Chen

AAP, Kolaskar antigenicity, BcePred (15, 17, 18)). For instance,
the LBTope algorithms perform optimally in the IEDB-derived
LBTope datasets (AUC � 0.81– 0.97) but poorly in indepen-
dent datasets (average AUC � 0.57, Table 1). In contrast, many
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FIGURE 5. Comparative discriminatory power of protein property scales and machine learning algorithms, and dominant properties of B-cell epitope
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untrained protein property scales, such as protein disorder
tendency, that were developed for different reasons neverthe-
less predict B-cell epitopes with higher accuracy than specifi-
cally developed B-cell epitope prediction scales/machine learn-
ing algorithms (supplemental Tables S2 and S3 and Fig. 5B).

A fundamental conundrum in B-cell epitope prediction is the
conceptual and methodological approach that leads to the
eventual identification of a B-cell epitope. Vastly preferable is
the use of x-ray crystallography-solved three-dimensional
structures of antigen-antibody complexes. Such data define
precisely the actual determinants of a protein antigen that spe-
cifically contact an antibody, in essence the set of protein resi-

dues that are buried under a cognate antibody in the antibody-
antigen complex (3–7). However, only 26 –107 non-identical
three-dimensional structures of antigen-antibody complexes
have been generated by different investigators from the Protein
Data Bank crystallographic database (3–7, 56 – 62). Such data
were used for training and development of several B-cell
epitope prediction methods such as CEP, DiscoTope, Rapberg-
er’s method, Ellipro, PEPITO, and Epitopia (56 – 62). The major
shortcoming is the requirement for the three-dimensional
structure of the protein antigen. In practice, this limitation is
currently insurmountable because we do not know the three-
dimensional structure of most proteins.
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In practice, B-cell epitopes are commonly determined by use
of peptide antigens and their ability to capture antibodies. This
approach does not identify which residues of the peptide are in
binding contact with antibody CDR residues and which actually
contribute to the antigen-antibody complex formation. None-
theless, antibody-reactive peptide sequences, particularly those
identified by systematic mapping with overlapping peptides,
are commonly referred to as B-cell epitopes (16, 63– 65). This
terminology is justified because even non-binding residues are
specifically required to provide the structural context for bind-
ing residues, thus the linear peptide sequence is still an indis-
pensable, if not complete, characterization of a B-cell epitope. It
is important, however, to understand that epitope prediction
from linear peptide sequences will weigh the total combined
contributions of binding (functional) and spacer (structural)
amino acids to an epitope. Nevertheless, B-cell epitope predic-
tion from the primary amino acid sequence of a protein is a
valid and, for practical purposes, highly desirable approach. In
addition, tens of thousands of B-cell epitope/non-epitope
sequences have been deposited in IEDB (24). Thus, the
sequence-based B-cell epitope datasets provide a viable basis
for training and development of B-cell epitope prediction algo-
rithms (10 –22).

The profound conundrum for epitope prediction by use of
linear peptide sequence-based methods, however, is the fact
that more than 90% of all B-cell epitopes are not linear, com-
posed of immediately neighboring binding residues, but they
are discontinuous. In almost all B-cell epitopes, the typical 2–5
dominant binding residues will be discontinuously arranged
randomly in the linear epitope sequence (3, 6, 7). Nevertheless,
in the majority of epitopes these binding residues are still
closely spaced. For instance, Sivalingam and Shepherd (6) show
that 30-aa peptides will encompass the functional residues of
75% of all B-cell epitopes. Thus, increased lengths of peptide
antigens will increase the probability of capturing more of the
residues of any epitope that are required for high affinity anti-
body binding (Fig. 1). In addition, long peptides may increase
the probability of capturing different antibody clones that may
bind the same epitope region differently (65). For instance, C.
trachomatis OmpA serovar-specific peptide serology has used
6 –10-aa peptides, with inconsistent results (66 –70). In our
study, we observed strong but completely serovar-specific anti-
body reactivity by use of �16-aa peptide antigens (2). Impor-
tantly, inclusion of conserved adjacent residues shared among
chlamydial species, in addition to the 7–10 central polymorphic
serovar-determinant OmpA residues, was required for strong,
yet specific, antibody binding (2).

Conceptually, a peptide antigen captures antibodies if it can
fold to complement the binding region of the cognate antibody
(65). Because of such structural constraints, the length of pep-
tide antigens may also negatively influence antibody binding.
For instance, if the few randomly spaced dominant binding res-
idues are obstructed by structural constraints such as misfold-
ing, masking by non-epitope residues, or peptide aggregation
(65), antibody binding may be compromised. Our study clearly
shows that moderate elongation of peptide antigens strongly
enhances antibody binding, while more extensive elongation
reduces antibody binding again in 20% of B-cell epitopes, pre-

sumably by masking epitope residues (Fig. 1). The implication
of this fact is that an optimal sequence length exists that most
reliably discriminates between true epitopes and non-epitopes
and that sequences of that length should be used to generate
datasets for the development of B-cell prediction methods.

A protein surface can be thought of as a continuous land-
scape of epitopic regions, and any region of this landscape may
be identified as an epitope under specific conditions (56,
63– 65). For instance, Singh et al. (24) reported that all non-
epitopes in the LBTope_Confirm dataset have been reported as
“non-epitopes” in at least two studies. Yet 8.3% of these non-
epitopes are reported as “epitopes” in the fBcpreds dataset (21).
Thus, binary classification of antigen regions into epitopes or
non-epitopes is problematic because all epitopes of most anti-
gens are not known, and defining B-cell epitopes and non-
epitopes is a challenging task due to the variability in epitope
discovery assays (71) and the stochastic antibody responses to
protein antigens (9) and their epitopes (2). Muller et al. (71)
found almost the entire histone 2A protein antigenic when they
forced highest B-cell stimulation and antibody reactivity by
excessive use of adjuvants and high antigen doses. In contrast,
raising antisera in our study by experimental infection rather
than by forced immunization very likely resulted in much lower
adjuvantation and lower antigenic stimulus by physiologically
processed native protein antigens (2). Thus, antibodies likely
were generated mainly against exposed antibody-binding
regions of highly expressed proteins. In addition, targeting
known immunodominant proteins by the use of antisera pooled
from multiple individuals maximized correct epitope/non-
epitope discrimination by offsetting the inherent stochasticity
of antibody formation in individuals and by minimizing false-
negative results. We observed a clear trend that certain protein
regions are a more frequent source of B-cell epitopes than oth-
ers, and we think that our study identified the distinctive prop-
erties of such preferentially antibody-recognized regions.

Kringelum et al. (7) determined by x-ray crystallography that
hydrophobic amino acids of epitopes located closest to the anti-
body, and charged amino acids most distant, but that the amino
acid composition of equally surface-exposed non-epitopes did
not differ significantly from epitopes. However, the amino acid
composition of epitopes deviated significantly from the whole
protein (7). We compared properties of B-cell epitope regions
with experimentally confirmed non-epitope regions or the
remaining protein regions, but we do not know about surface
exposure. Similarly, we report that many protein properties of
B-cell epitope regions differ substantially from the total
remaining proteins (Fig. 5), making these properties candidates
for B-cell epitope prediction. Accessibility of the antigen by
cognate B-cell receptors or antibodies is the central concept in
molecular recognition of epitope by the paratope, and thus
highly surface-exposed hydrophilic/charged epitope residues
will first interact with the antibody (Fig. 5C). Although hydro-
phobic amino acids except for alanine, the smallest one, are
under-represented in epitopes, those that are present may “pro-
vide the glue” in the final stabilization of the antigen-antibody
complex by hydrophobic interaction. All non-covalent antigen-
antibody interactions are thought to be driven by shape
complementarities in the complex formation (57). Thus,
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paratopes may interact preferentially with flexible regions of an
antigen rather than with highly structured regions (72). Pre-
cisely because of relaxed structural constraints, such protein
regions should accommodate higher amino acid substitution
rates, favoring under immunoselective pressure the emergence
of escape mutants.

B-cell epitopes have historically been recognized as hydro-
philic (10, 11), flexible (12), mobile (high B factor; 73, 74), sur-
face-exposed or solvent-accessible (3, 5, 13, 57, 75), enriched
with �-turns (14) or coils/loops (3– 4, 7), and highly sequence-
polymorphic (3–5). Recent three-dimensionally based studies
(3–7) also show that epitopes compared with non-epitope
regions are (i) enriched for polar and charged amino acids and
depleted of hydrophobic amino acids, (ii) more surface-ex-
posed than the remaining protein, (iii) more sequence polymor-
phic, and (iv) enriched with unorganized secondary structure
elements and depleted of strands and helices (3–7). In our best
characterized 18 chlamydial proteins (Chl_18Prot dataset),
hydrophilicity, solvent accessibility/surface-exposed tendency,
coils in secondary structure, and evolutionary mutation rate are
all collinear and highly predictive of B-cell epitopes. Protein
disorder tendency synthesizes these properties into a single
descriptor, rendering IUPred-L disorder scores the single best
predictor of epitope regions (Fig. 5). Hence, our findings
regarding B-cell epitope properties are in agreement with mod-
ern three-dimensional structure-based studies (3–7) or classi-
cal peptide sequence-based studies (10 –14), and protein disor-
der is the unifying concept behind them.

Important antigenic regions of viral and bacterial proteins
have been identified as disordered regions of these protein anti-
gens (72). However, x-ray crystallography studies have not
specifically reported the localization of B-cell epitopes in
disordered protein regions (3–7, 56 – 65). The most likely
explanation for this discrepancy to our results is the fact that
the Protein Data Bank database is biased toward proteins of
common interest that are easy to produce and crystallize. Many
expressed proteins cannot be crystallized, and among the main
factors for this failure is the presence of even small numbers
(1–10 aa) of disordered residues that are well known to have
deleterious effects on crystallization (76, 77). For convenient
determination of three-dimensional structures, disordered
protein regions are removed from expressed proteins (78). As a
result, disordered proteins or protein regions are rare in the
Protein Data Bank database compared with whole proteomes
(79 – 81). Moreover, crystal packing is thought to enforce cer-
tain disordered regions to become ordered (31), resulting in
incorrect characterization of disordered protein residues. In
addition, disordered segments crystallized together with bind-
ing antibodies are usually classified as ordered structure in the
antigen-antibody complex, despite their lack of ordered struc-
ture in the unbound state. Thus, datasets generated by crystal-
lography may inherently under-represent B-cell epitopes with
high disorder tendency.

Protein disorder tendency has also not been proposed for
B-cell epitope prediction from primary amino acid sequences,
although many protein property scales, particularly aa propen-
sity scales, have been tested and recommended for B-cell
epitope prediction (16, 63– 65). In our study, the IUPred-L dis-

order scale has the highest epitope discriminatory power in all
datasets. We explain this discrepancy by the typical experimen-
tal approach with which investigators test sequence-based
epitope prediction methods as follows: wide-context disorder
properties of proteins will not be correctly determined by solely
analyzing the typically short peptide sequences of databases. To
achieve correct results, we elongated test peptides with source
protein sequences and embedded them in a wider context of
random Swiss-Prot sequences (supplemental Table S1 and sup-
plemental Appendix).

As a norm in investigations addressing protein disorder, pro-
tein residues are binary-classified as either “ordered” or “disor-
dered.” In contrast, disorder prediction algorithms quantify the
probability of protein disorder, and binary classification con-
verts the prediction scores by using an arbitrary cutoff at a pre-
determined threshold. By these criteria, many epitopes would
not classify as disordered. However, relative to the moving aver-
age score of the whole source protein, B-cell epitopes consis-
tently score highest for protein disorder tendency. For actual
B-cell epitope prediction, the IUPred-L protein disorder scale
consistently performs best (87% specificity at 80% sensitivity,
86% accuracy; Fig. 4). However, if a 25-aa moving average score
is used, several other protein property scales such as hydrophi-
licity (Parker), hydrophobicity (Miyazawa), solvent accessibility
(Spine-X), or Bepipred perform similarly. In fact, scoring by
narrow-context scales for long 20 –30-aa peptides reflects pro-
tein disorder tendency such as the Globplot-2 algorithm pre-
dicts protein disorder tendency by a wide-context hydrophilic-
ity score (38). It is noteworthy that even the best combination of
top performing scales does not substantially increase predic-
tion performance (Fig. 4), due to multi-collinearity of these
scales. The best performing combined scale (Figs. 4 and 5 and
supplemental Tables S2 and S3), derived from smoothed and
standardized 25-aa peptide scores of three primary scales,
improves prediction accuracy only marginally (90 –92% speci-
ficity at 80% sensitivity, 88 –90% accuracy; Fig. 4).

Our data show that wide-context disorder scores or long
20 –30-aa peptide scores of narrow-context scales are optimal
for B-cell epitope prediction (Tables 2 and 3), consistent with
the higher antibody binding of 16 –30-aa peptide antigens (Fig.
1). Compared with highly structured protein regions, disor-
dered regions may have several functional advantages for effi-
cient interactions with partner molecules (26, 27), such as the
capacity of initiating binding by long range electrostatic interac-
tions, high flexibility, binding plasticity and speed, minimal steric
restrictions in binding, and the ability to form very stable inter-
twined complexes (26, 27, 82–87). Hence, our investigation
merges theoretical advances in protein biophysics with very prac-
tical aspects of protein interaction, the identification of peptide
sequences best suited for recognition by CDRs of antibodies.
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K. S. R. and E. U. C. performed the experiments; K. S. R. and B. K.
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